Results 1  10
of
67
Lossless condensers, unbalanced expanders, and extractors
 In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing
, 2001
"... Abstract Trevisan showed that many pseudorandom generator constructions give rise to constructionsof explicit extractors. We show how to use such constructions to obtain explicit lossless condensers. A lossless condenser is a probabilistic map using only O(log n) additional random bitsthat maps n bi ..."
Abstract

Cited by 88 (20 self)
 Add to MetaCart
Abstract Trevisan showed that many pseudorandom generator constructions give rise to constructionsof explicit extractors. We show how to use such constructions to obtain explicit lossless condensers. A lossless condenser is a probabilistic map using only O(log n) additional random bitsthat maps n bits strings to poly(log K) bit strings, such that any source with support size Kis mapped almost injectively to the smaller domain. Our construction remains the best lossless condenser to date.By composing our condenser with previous extractors, we obtain new, improved extractors. For small enough minentropies our extractors can output all of the randomness with only O(log n) bits. We also obtain a new disperser that works for every entropy loss, uses an O(log n)bit seed, and has only O(log n) entropy loss. This is the best disperser construction to date,and yields other applications. Finally, our lossless condenser can be viewed as an unbalanced
Unbalanced expanders and randomness extractors from parvareshvardy codes
 In Proceedings of the 22nd Annual IEEE Conference on Computational Complexity
, 2007
"... We give an improved explicit construction of highly unbalanced bipartite expander graphs with expansion arbitrarily close to the degree (which is polylogarithmic in the number of vertices). Both the degree and the number of righthand vertices are polynomially close to optimal, whereas the previous ..."
Abstract

Cited by 79 (7 self)
 Add to MetaCart
We give an improved explicit construction of highly unbalanced bipartite expander graphs with expansion arbitrarily close to the degree (which is polylogarithmic in the number of vertices). Both the degree and the number of righthand vertices are polynomially close to optimal, whereas the previous constructions of TaShma, Umans, and Zuckerman (STOC ‘01) required at least one of these to be quasipolynomial in the optimal. Our expanders have a short and selfcontained description and analysis, based on the ideas underlying the recent listdecodable errorcorrecting codes of Parvaresh and Vardy (FOCS ‘05). Our expanders can be interpreted as nearoptimal “randomness condensers, ” that reduce the task of extracting randomness from sources of arbitrary minentropy rate to extracting randomness from sources of minentropy rate arbitrarily close to 1, which is a much easier task. Using this connection, we obtain a new construction of randomness extractors that is optimal up to constant factors, while being much simpler than the previous construction of Lu et al. (STOC ‘03) and improving upon it when the error parameter is small (e.g. 1/poly(n)).
Extracting randomness using few independent sources
 In Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science
, 2004
"... In this work we give the first deterministic extractors from a constant number of weak sources whose entropy rate is less than 1/2. Specifically, for every δ> 0 we give an explicit construction for extracting randomness from a constant (depending polynomially on 1/δ) number of distributions over ..."
Abstract

Cited by 49 (6 self)
 Add to MetaCart
In this work we give the first deterministic extractors from a constant number of weak sources whose entropy rate is less than 1/2. Specifically, for every δ> 0 we give an explicit construction for extracting randomness from a constant (depending polynomially on 1/δ) number of distributions over {0, 1} n, each having minentropy δn. These extractors output n bits, which are 2 −n close to uniform. This construction uses several results from additive number theory, and in particular a recent one by Bourgain, Katz and Tao [BKT03] and of Konyagin [Kon03]. We also consider the related problem of constructing randomness dispersers. For any constant output length m, our dispersers use a constant number of identical distributions, each with minentropy Ω(log n) and outputs every possible mbit string with positive probability. The main tool we use is a variant of the “steppingup lemma ” used in establishing lower bound
Simulating Independence: New Constructions of Condensers, Ramsey Graphs, Dispersers, and Extractors
 In Proceedings of the 37th Annual ACM Symposium on Theory of Computing
, 2005
"... We present new explicit constructions of deterministic randomness extractors, dispersers and related objects. More precisely, a distribution X over binary strings of length n is called a δsource if it assigns probability at most 2 −δn to any string of length n, and for any δ> 0 we construct the ..."
Abstract

Cited by 43 (13 self)
 Add to MetaCart
We present new explicit constructions of deterministic randomness extractors, dispersers and related objects. More precisely, a distribution X over binary strings of length n is called a δsource if it assigns probability at most 2 −δn to any string of length n, and for any δ> 0 we construct the following poly(n)time computable functions: 2source disperser: D: ({0, 1} n) 2 → {0, 1} such that for any two independent δsources X1, X2 we have that the support of D(X1, X2) is {0, 1}. Bipartite Ramsey graph: Let N = 2 n. A corollary is that the function D is a 2coloring of the edges of KN,N (the complete bipartite graph over two sets of N vertices) such that any induced subgraph of size N δ by N δ is not monochromatic. 3source extractor: E: ({0, 1} n) 2 → {0, 1} such that for any three independent δsources X1, X2, X3 we have that E(X1, X2, X3) is (o(1)close to being) an unbiased random bit. No previous explicit construction was known for either of these, for any δ < 1/2 and these results constitute major progress to longstanding open problems. A component in these results is a new construction of condensers that may be of independent
Linear degree extractors and the inapproximability of max clique and chromatic number
 THEORY OF COMPUTING
, 2007
"... ... that for all ε> 0, approximating MAX CLIQUE and CHROMATIC NUMBER to within n1−ε are NPhard. We further derandomize results of Khot (FOCS ’01) and show that for some γ> 0, no quasipolynomial time algorithm approximates MAX CLIQUE or CHROMATIC NUMBER to within n/2 (logn)1−γ, unless N˜P = ˜ ..."
Abstract

Cited by 42 (0 self)
 Add to MetaCart
... that for all ε> 0, approximating MAX CLIQUE and CHROMATIC NUMBER to within n1−ε are NPhard. We further derandomize results of Khot (FOCS ’01) and show that for some γ> 0, no quasipolynomial time algorithm approximates MAX CLIQUE or CHROMATIC NUMBER to within n/2 (logn)1−γ, unless N˜P = ˜P. The key to these results is a new construction of dispersers, which are related to randomness extractors. A randomness extractor is an algorithm which extracts randomness from a lowquality random source, using some additional truly random bits. We construct new extractors which require only log2 n + O(1) additional random bits for sources with constant entropy rate, and have constant error. Our dispersers use an arbitrarily small constant
Extractors for a constant number of polynomially small minentropy independent sources
 In Proceedings of the 38th Annual ACM Symposium on Theory of Computing
, 2006
"... We consider the problem of randomness extraction from independent sources. We construct an extractor that can extract from a constant number of independent sources of length n, each of which have minentropy n γ for an arbitrarily small constant γ> 0. Our extractor is obtained by composing seeded ..."
Abstract

Cited by 39 (10 self)
 Add to MetaCart
We consider the problem of randomness extraction from independent sources. We construct an extractor that can extract from a constant number of independent sources of length n, each of which have minentropy n γ for an arbitrarily small constant γ> 0. Our extractor is obtained by composing seeded extractors in simple ways. We introduce a new technique to condense independent somewhererandom sources which looks like a useful way to manipulate independent sources. Our techniques are different from those used in recent work [BIW04, BKS + 05, Raz05, Bou05] for this problem in the sense that they do not rely on any results from additive number theory. Using Bourgain’s extractor [Bou05] as a black box, we obtain a new extractor for 2 independent blocksources with few blocks, even when the minentropy is as small as polylog(n). We also show how to modify the 2 source disperser for linear minentropy of Barak et al. [BKS + 05] and the 3 source extractor of Raz [Raz05] to get dispersers/extractors with exponentially small error and linear output length where previously both were constant. In terms of Ramsey Hypergraphs, for every constant 1> γ> 0 our construction gives a family of explicit O(1/γ)uniform hypergraphs on N vertices that avoid cliques and independent sets of (log N)γ size 2.
2source dispersers for subpolynomial entropy and Ramsey graphs beating the FranklWilson construction
 Proceedings of STOC06
, 2006
"... The main result of this paper is an explicit disperser for two independent sources on n bits, each of entropy k = n o(1). Put differently, setting N = 2 n and K = 2 k, we construct explicit N × N Boolean matrices for which no K × K submatrix is monochromatic. Viewed as adjacency matrices of bipartit ..."
Abstract

Cited by 27 (6 self)
 Add to MetaCart
The main result of this paper is an explicit disperser for two independent sources on n bits, each of entropy k = n o(1). Put differently, setting N = 2 n and K = 2 k, we construct explicit N × N Boolean matrices for which no K × K submatrix is monochromatic. Viewed as adjacency matrices of bipartite graphs, this gives an explicit construction of KRamsey bipartite graphs of size N. This greatly improves the previous bound of k = o(n) of Barak, Kindler, Shaltiel, Sudakov and Wigderson [4]. It also significantly improves the 25year record of k = Õ( √ n) on the special case of Ramsey graphs, due to Frankl and Wilson [9]. The construction uses (besides ”classical ” extractor ideas) almost all of the machinery developed in the last couple of years for extraction from independent sources, including: • Bourgain’s extractor for 2 independent sources of some entropy rate < 1/2 [5] • Raz’s extractor for 2 independent sources, one of which has any entropy rate> 1/2 [18] • Rao’s extractor for 2 independent blocksources of entropy n Ω(1) [17]
DETERMINISTIC EXTRACTORS FOR BITFIXING SOURCES BY OBTAINING AN INDEPENDENT SEED
 ELECTRONIC COLLOQUIUM ON COMPUTATIONAL COMPLEXITY
, 2005
"... An (n, k)bitfixing source is a distribution X over {0, 1} n such that there is a subset of k variables in X1,..., Xn which are uniformly distributed and independent of each other, and the remaining n − k variables are fixed. A deterministic bitfixing source extractor is a function E: {0, 1} n → ..."
Abstract

Cited by 24 (7 self)
 Add to MetaCart
An (n, k)bitfixing source is a distribution X over {0, 1} n such that there is a subset of k variables in X1,..., Xn which are uniformly distributed and independent of each other, and the remaining n − k variables are fixed. A deterministic bitfixing source extractor is a function E: {0, 1} n → {0, 1} m which on an arbitrary (n, k)bitfixing source outputs m bits that are statisticallyclose to uniform. Recently, Kamp and Zuckerman [44th FOCS, 2003] gave a construction of a deterministic bitfixing source extractor that extracts Ω(k2 /n) bits and requires k> √ n. In this paper we give constructions of deterministic bitfixing source extractors that extract (1 − o(1))k bits whenever k> (log n) c for some universal constant c> 0. Thus, our constructions extract almost all the randomness from bitfixing sources and work even when k is small. For k ≫ √ n the extracted bits have statistical distance 2−nΩ(1) from uniform, and for k ≤ √ n the extracted bits have statistical distance k−Ω(1) from uniform. Our technique gives a general method to transform deterministic bitfixing source extractors that extract few bits into extractors which extract almost all the bits.
Extracting Kolmogorov complexity with applications to dimension zeroone laws
 IN PROCEEDINGS OF THE 33RD INTERNATIONAL COLLOQUIUM ON AUTOMATA, LANGUAGES, AND PROGRAMMING
, 2006
"... We apply recent results on extracting randomness from independent sources to "extract " Kolmogorov complexity. For any ff; ffl? 0, given a string x with K(x) ? ffjxj, we show how to use a constant number of advice bits to efficiently compute another string y, jyj = \Omega (jxj), ..."
Abstract

Cited by 20 (4 self)
 Add to MetaCart
We apply recent results on extracting randomness from independent sources to &quot;extract &quot; Kolmogorov complexity. For any ff; ffl? 0, given a string x with K(x) ? ffjxj, we show how to use a constant number of advice bits to efficiently compute another string y, jyj = \Omega (jxj), with K(y) ? (1 \Gamma ffl)jyj. This result holds for both classical and spacebounded Kolmogorov complexity. We use the extraction procedure for spacebounded complexity to establish zeroone laws for polynomialspace strong dimension. Our results include: (i) If Dimpspace(E) ? 0, then Dimpspace(E=O(1)) = 1. (ii) Dim(E=O(1) j ESPACE) is either 0 or 1. (iii) Dim(E=poly j ESPACE) is either 0 or 1. In other words,