Results 1 
3 of
3
The BoyerMoore Theorem Prover and Its Interactive Enhancement
, 1995
"... . The socalled "BoyerMoore Theorem Prover" (otherwise known as "Nqthm") has been used to perform a variety of verification tasks for two decades. We give an overview of both this system and an interactive enhancement of it, "PcNqthm," from a number of perspectives. F ..."
Abstract

Cited by 30 (0 self)
 Add to MetaCart
. The socalled "BoyerMoore Theorem Prover" (otherwise known as "Nqthm") has been used to perform a variety of verification tasks for two decades. We give an overview of both this system and an interactive enhancement of it, "PcNqthm," from a number of perspectives. First we introduce the logic in which theorems are proved. Then we briefly describe the two mechanized theorem proving systems. Next, we present a simple but illustrative example in some detail in order to give an impression of how these systems may be used successfully. Finally, we give extremely short descriptions of a large number of applications of these systems, in order to give an idea of the breadth of their uses. This paper is intended as an informal introduction to systems that have been described in detail and similarly summarized in many other books and papers; no new results are reported here. Our intention here is merely to present Nqthm to a new audience. This research was supported in part by ONR Contract N...
Mechanically Verifying Safety and Liveness Properties of Delay Insensitive Circuits
 the BoyerMoore Prover. 1991 International Workshop on Formal Methods in VLSI Design
, 1994
"... This paper describes, by means of an example, how one may mechanically verify delay insensitive circuits on an automated theorem prover. It presents the verification of both the safety and liveness properties of an nnode delay insensitive FIFO circuit[20]. The proof system used is a mechanized impl ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
This paper describes, by means of an example, how one may mechanically verify delay insensitive circuits on an automated theorem prover. It presents the verification of both the safety and liveness properties of an nnode delay insensitive FIFO circuit[20]. The proof system used is a mechanized implementation of Unity[7] on the BoyerMoore prover[4], described in [12]. This paper describes the circuit formally in the BoyerMoore logic and presents the mechanically verified correctness theorems. The formal description also captures the protocol that the circuit expects its environment to obey and specifies a class of suitable initial states. This paper demonstrates how a general purpose automated proof system for concurrent programs may be used to mechanically verify both the safety and liveness properties of arbitrary sized delay insensitive circuits. Keywords: Automated theorem proving, hardware verification, delay insensitive circuits. Author's Address: Naval Research Laboratory, C...