Results 1  10
of
34
A.Lewis, Infinite time turing machines
 Journal of Symbolic Logic
"... Abstract. We extend in a natural way the operation of Turing machines to infinite ordinal time, and investigate the resulting supertask theory of computability and decidability on the reals. Every Π1 1 set, for example, is decidable by such machines, and the semidecidable sets form a portion of the ..."
Abstract

Cited by 73 (5 self)
 Add to MetaCart
Abstract. We extend in a natural way the operation of Turing machines to infinite ordinal time, and investigate the resulting supertask theory of computability and decidability on the reals. Every Π1 1 set, for example, is decidable by such machines, and the semidecidable sets form a portion of the ∆1 2 sets. Our oracle concept leads to a notion of relative computability for sets of reals and a rich degree structure, stratified by two natural jump operators. In these days of superfast computers whose speed seems to be increasing without bound, the more philosophical among us are perhaps pushed to wonder: what could we compute with an infinitely fast computer? By proposing a natural model for supertasks—computations with infinitely many steps—we provide in this paper a theoretical foundation on which to answer this question. Our model is simple: we simply extend the Turing machine concept into transfinite ordinal time. The resulting machines can perform infinitely many steps of computation, and go on to more computation after that. But mechanically they work just like Turing machines. In particular, they have the usual Turing machine hardware; there is still the same smooth infinite paper tape and the same mechanical head moving back and forth according to a finite algorithm, with finitely many states. What is new is the definition of the behavior of the machine at limit ordinal times. The resulting computability theory leads to a notion of computation on the reals, concepts of decidability and semidecidability for sets of reals as well as individual reals, two kinds of jumpoperator, and a notion of relative computability using oracles which gives a rich degree structure on both the collection of reals and the collection of sets of reals. But much remains unknown; we hope to stir interest in these ideas, which have been a joy for us to think about.
NonTuring Computers and NonTuring Computability
, 1994
"... possible to perform computational supertasks — that is, an infinite number of computational steps in a finite span of time — in a kind of relativistic spacetime that Earman and Norton (1993) have dubbed a MalamentHogarth spacetime1. ..."
Abstract

Cited by 36 (2 self)
 Add to MetaCart
possible to perform computational supertasks — that is, an infinite number of computational steps in a finite span of time — in a kind of relativistic spacetime that Earman and Norton (1993) have dubbed a MalamentHogarth spacetime1.
Hypercomputation: computing more than the Turing machine
, 2002
"... In this report I provide an introduction to the burgeoning field of hypercomputation – the study of machines that can compute more than Turing machines. I take an extensive survey of many of the key concepts in the field, tying together the disparate ideas and presenting them in a structure which al ..."
Abstract

Cited by 31 (5 self)
 Add to MetaCart
In this report I provide an introduction to the burgeoning field of hypercomputation – the study of machines that can compute more than Turing machines. I take an extensive survey of many of the key concepts in the field, tying together the disparate ideas and presenting them in a structure which allows comparisons of the many approaches and results. To this I add several new results and draw out some interesting consequences of hypercomputation for several different disciplines. I begin with a succinct introduction to the classical theory of computation and its place amongst some of the negative results of the 20 th Century. I then explain how the ChurchTuring Thesis is commonly misunderstood and present new theses which better describe the possible limits on computability. Following this, I introduce ten different hypermachines (including three of my own) and discuss in some depth the manners in which they attain their power and the physical plausibility of each method. I then compare the powers of the different models using a device from recursion theory. Finally, I examine the implications of hypercomputation to mathematics, physics, computer science and philosophy. Perhaps the most important of these implications is that the negative mathematical results of Gödel, Turing and Chaitin are each dependent upon the nature of physics. This both weakens these results and provides strong links between mathematics and physics. I conclude that hypercomputation is of serious academic interest within many disciplines, opening new possibilities that were previously ignored because of long held misconceptions about the limits of computation.
Beyond The Universal Turing Machine
, 1998
"... We describe an emerging field, that of nonclassical computability and nonclassical computing machinery. According to the nonclassicist, the set of welldefined computations is not exhausted by the computations that can be carried out by a Turing machine. We provide an overview of the field and a phi ..."
Abstract

Cited by 28 (1 self)
 Add to MetaCart
We describe an emerging field, that of nonclassical computability and nonclassical computing machinery. According to the nonclassicist, the set of welldefined computations is not exhausted by the computations that can be carried out by a Turing machine. We provide an overview of the field and a philosophical defence of its foundations.
Accelerated Turing Machines
 Minds and Machines
, 2002
"... Abstract. Accelerating Turing machines are Turing machines of a sort able to perform tasks that are commonly regarded as impossible for Turing machines. For example, they can determine whether or not the decimal representation of π contains n consecutive 7s, for any n; solve the Turingmachine halti ..."
Abstract

Cited by 26 (2 self)
 Add to MetaCart
Abstract. Accelerating Turing machines are Turing machines of a sort able to perform tasks that are commonly regarded as impossible for Turing machines. For example, they can determine whether or not the decimal representation of π contains n consecutive 7s, for any n; solve the Turingmachine halting problem; and decide the predicate calculus. Are accelerating Turing machines, then, logically impossible devices? I argue that they are not. There are implications concerning the nature of effective procedures and the theoretical limits of computability. Contrary to a recent paper by Bringsjord, Bello and Ferrucci, however, the concept of an accelerating Turing machine cannot be used to shove up Searle’s Chinese room argument.
Recursive analysis characterized as a class of real recursive functions
 Fundamenta Informaticae
, 2006
"... Recently, using a limit schema, we presented an analog and machine independent algebraic characterization of elementary functions over the real numbers in the sense of recursive analysis. In a different and orthogonal work, we proposed a minimalization schema that allows to provide a class of real r ..."
Abstract

Cited by 18 (8 self)
 Add to MetaCart
Recently, using a limit schema, we presented an analog and machine independent algebraic characterization of elementary functions over the real numbers in the sense of recursive analysis. In a different and orthogonal work, we proposed a minimalization schema that allows to provide a class of real recursive functions that corresponds to extensions of computable functions over the integers. Mixing the two approaches we prove that computable functions over the real numbers in the sense of recursive analysis can be characterized as the smallest class of functions that contains some basic functions, and closed by composition, linear integration, minimalization and limit schema.
Computation and Hypercomputation
 MINDS AND MACHINES
, 2003
"... Does Nature permit the implementation of behaviours that cannot be simulated computationally? We consider the meaning of physical computationality in some detail, and present arguments in favour of physical hypercomputation: for example, modern scientific method does not allow the specification o ..."
Abstract

Cited by 15 (4 self)
 Add to MetaCart
Does Nature permit the implementation of behaviours that cannot be simulated computationally? We consider the meaning of physical computationality in some detail, and present arguments in favour of physical hypercomputation: for example, modern scientific method does not allow the specification of any experiment capable of refuting hypercomputation. We consider the implications of relativistic algorithms capable of solving the (Turing) Halting Problem. We also reject as a fallacy the argument that hypercomputation has no relevance because noncomputable values are indistinguishable from sufficiently close computable approximations. In addition to
Elementarily computable functions over the real numbers and Rsubrecursive functions
 THEORETICAL COMPUTER SCIENCE
, 2005
"... We present an analog and machineindependent algebraic characterization of elementarily computable functions over the real numbers in the sense of recursive analysis: we prove that they correspond to the smallest class of functions that contains some basic functions, and closed by composition, linea ..."
Abstract

Cited by 13 (5 self)
 Add to MetaCart
We present an analog and machineindependent algebraic characterization of elementarily computable functions over the real numbers in the sense of recursive analysis: we prove that they correspond to the smallest class of functions that contains some basic functions, and closed by composition, linear integration, and a simple limit schema. We generalize this result to all higher levels of the Grzegorczyk Hierarchy. This paper improves several previous partial characterizations and has a dual interest: • Concerning recursive analysis, our results provide machineindependent characterizations of natural classes of computable functions over the real numbers, allowing to define these classes without usual considerations on higherorder (type 2) Turing machines. • Concerning analog models, our results provide a characterization of the power of a natural class of analog models over the real numbers and provide new insights for understanding the relations between several analog computational models.
Physical Hypercomputation and the Church–Turing Thesis
, 2003
"... We describe a possible physical device that computes a function that cannot be computed by a Turing machine. The device is physical in the sense that it is compatible with General Relativity. We discuss some objections, focusing on those which deny that the device is either a computer or computes a ..."
Abstract

Cited by 13 (0 self)
 Add to MetaCart
We describe a possible physical device that computes a function that cannot be computed by a Turing machine. The device is physical in the sense that it is compatible with General Relativity. We discuss some objections, focusing on those which deny that the device is either a computer or computes a function that is not Turing computable. Finally, we argue that the existence of the device does not refute the Church–Turing thesis, but nevertheless may be a counterexample to Gandy’s thesis.
Deciding arithmetic in Malament–Hogarth spacetimes
, 2001
"... Abstract Presented here are some new results concerning the computational power of socalled SADn computers, a class of Turing machinebased computers that utilise the geometry of MalamentHogarth spacetimes to perform nonTuring computable feats. The main result is that SADn can decide nquantifier ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
Abstract Presented here are some new results concerning the computational power of socalled SADn computers, a class of Turing machinebased computers that utilise the geometry of MalamentHogarth spacetimes to perform nonTuring computable feats. The main result is that SADn can decide nquantifier arithmetic but not (n+1)quantifier arithmetic, a result which reveals how neatly SADns map into the Kleene arithmetical hierarchy.