Results 1  10
of
19
Arrangements and Their Applications
 Handbook of Computational Geometry
, 1998
"... The arrangement of a finite collection of geometric objects is the decomposition of the space into connected cells induced by them. We survey combinatorial and algorithmic properties of arrangements of arcs in the plane and of surface patches in higher dimensions. We present many applications of arr ..."
Abstract

Cited by 89 (20 self)
 Add to MetaCart
(Show Context)
The arrangement of a finite collection of geometric objects is the decomposition of the space into connected cells induced by them. We survey combinatorial and algorithmic properties of arrangements of arcs in the plane and of surface patches in higher dimensions. We present many applications of arrangements to problems in motion planning, visualization, range searching, molecular modeling, and geometric optimization. Some results involving planar arrangements of arcs have been presented in a companion chapter in this book, and are extended in this chapter to higher dimensions. Work by P.A. was supported by Army Research Office MURI grant DAAH049610013, by a Sloan fellowship, by an NYI award, and by a grant from the U.S.Israeli Binational Science Foundation. Work by M.S. was supported by NSF Grants CCR9122103 and CCR9311127, by a MaxPlanck Research Award, and by grants from the U.S.Israeli Binational Science Foundation, the Israel Science Fund administered by the Israeli Ac...
TRACES OF FINITE SETS: EXTREMAL PROBLEMS AND GEOMETRIC APPLICATIONS
, 1992
"... Given a hypergraph H and a subset S of its vertices, the trace of H on S is defined as HS = {E ∩ S: E ∈ H}. The Vapnik–Chervonenkis dimension (VCdimension) of H is the size of the largest subset S for which HS has 2 S edges. Hypergraphs of small VCdimension play a central role in many areas o ..."
Abstract

Cited by 17 (0 self)
 Add to MetaCart
Given a hypergraph H and a subset S of its vertices, the trace of H on S is defined as HS = {E ∩ S: E ∈ H}. The Vapnik–Chervonenkis dimension (VCdimension) of H is the size of the largest subset S for which HS has 2 S edges. Hypergraphs of small VCdimension play a central role in many areas of statistics, discrete and computational geometry, and learning theory. We survey some of the most important results related to this concept with special emphasis on (a) hypergraph theoretic methods and (b) geometric applications.
The maximum number of times the same distance can occur among the vertices of a convex ngon is O(n logn
 J. Combin. Theory Ser. A
"... ..."
On isosceles triangles and related problems in a convex polygon, manuscript
, 2010
"... ar ..."
(Show Context)
How many unit equilateral triangles can be generated by n points in convex position
 Amer. Math. Monthly
"... ..."