Results 1  10
of
18
Higher topos theory
, 2006
"... Let X be a topological space and G an abelian group. There are many different definitions for the cohomology group H n (X; G); we will single out three of them for discussion here. First of all, we have the singular cohomology groups H n sing (X; G), which are defined to be cohomology of a chain com ..."
Abstract

Cited by 47 (0 self)
 Add to MetaCart
Let X be a topological space and G an abelian group. There are many different definitions for the cohomology group H n (X; G); we will single out three of them for discussion here. First of all, we have the singular cohomology groups H n sing (X; G), which are defined to be cohomology of a chain complex of Gvalued singular cochains on X. An alternative is to regard H n (•, G) as a representable functor on the homotopy category
Quillen Closed Model Structures for Sheaves
, 1995
"... In this chapter I give a general procedure of transferring closed model structures along adjoint functor pairs. As applications I derive from a global closed model structure on the category of simplicial sheaves closed model structures on the category of sheaves of 2groupoids, the category of bisim ..."
Abstract

Cited by 14 (0 self)
 Add to MetaCart
In this chapter I give a general procedure of transferring closed model structures along adjoint functor pairs. As applications I derive from a global closed model structure on the category of simplicial sheaves closed model structures on the category of sheaves of 2groupoids, the category of bisimplicial sheaves and the category of simplicial sheaves of groupoids. Subsequently, the homotopy theories of these categories are related to the homotopy theory of simplicial sheaves. 1 Introduction There are two ways of trying to generalize the well known closed model structure on the category of simplicial sets to the category of simplicial objects in a Grothendieck topos. One way is to concentrate on the local aspect, and to use the Kanfibrations as a starting point. In [14] Heller showed that for simplicial presheaves there is a local (there called right) closed model structure. In [2] K. Brown showed that for a topological space X the category of "locally fibrant" sheaves of spectra on ...
Quasicategories vs Segal spaces
 IN CATEGORIES IN ALGEBRA, GEOMETRY AND MATHEMATICAL
, 2006
"... We show that complete Segal spaces and Segal categories are Quillen equivalent to quasicategories. ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
We show that complete Segal spaces and Segal categories are Quillen equivalent to quasicategories.
Homotopytheoretic aspects of 2–monads
 J. Homotopy Relat. Struct
"... We study 2monads and their algebras using a Catenriched version of Quillen model categories, emphasizing the parallels between the homotopical and 2categorical points of view. Every 2category with finite limits and colimits has a canonical model structure in which the weak equivalences are the e ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
We study 2monads and their algebras using a Catenriched version of Quillen model categories, emphasizing the parallels between the homotopical and 2categorical points of view. Every 2category with finite limits and colimits has a canonical model structure in which the weak equivalences are the equivalences; we use these to construct more interesting model structures on 2categories, including a model structure on the 2category of algebras for a 2monad T, and a model structure on a 2category of 2monads on a fixed 2category K. 1
A 2categories companion
"... Abstract. This paper is a rather informal guide to some of the basic theory of 2categories and bicategories, including notions of limit and colimit, 2dimensional universal algebra, formal category theory, and nerves of bicategories. 1. Overview and basic examples This paper is a rather informal gu ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Abstract. This paper is a rather informal guide to some of the basic theory of 2categories and bicategories, including notions of limit and colimit, 2dimensional universal algebra, formal category theory, and nerves of bicategories. 1. Overview and basic examples This paper is a rather informal guide to some of the basic theory of 2categories and bicategories, including notions of limit and colimit, 2dimensional universal algebra, formal category theory, and nerves of bicategories. As is the way of these things, the choice of topics is somewhat personal. No attempt is made at either rigour or completeness. Nor is it completely introductory: you will not find a definition of bicategory; but then nor will you really need one to read it. In keeping with the philosophy of category theory, the morphisms between bicategories play more of a role than the bicategories themselves. 1.1. The key players. There are bicategories, 2categories, and Catcategories. The latter two are exactly the same (except that strictly speaking a Catcategory should have small homcategories, but that need not concern us here). The first two are nominally different — the 2categories are the strict bicategories, and not every bicategory is strict — but every bicategory is biequivalent to a strict one, and biequivalence is the right general notion of equivalence for bicategories and for 2categories. Nonetheless, the theories of bicategories, 2categories, and Catcategories have rather different flavours.
TYPE THEORY AND HOMOTOPY
"... The purpose of this informal survey article is to introduce the reader to a new and surprising connection between Geometry, Algebra, and Logic, which has recently come to light in the form of an interpretation of the constructive type theory of Per MartinLöf into homotopy ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
The purpose of this informal survey article is to introduce the reader to a new and surprising connection between Geometry, Algebra, and Logic, which has recently come to light in the form of an interpretation of the constructive type theory of Per MartinLöf into homotopy
Sheaf Representation for Topoi
, 1997
"... It is shown that every (small) topos is equivalent to the category of global sections of a sheaf of socalled hyperlocal topoi, improving on a result of Lambek & Moerdijk. It follows that every boolean topos is equivalent to the global sections of a sheaf of wellpointed topoi. Completeness theo ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
It is shown that every (small) topos is equivalent to the category of global sections of a sheaf of socalled hyperlocal topoi, improving on a result of Lambek & Moerdijk. It follows that every boolean topos is equivalent to the global sections of a sheaf of wellpointed topoi. Completeness theorems for higherorder logic result as corollaries. The main result of this paper is the following. Theorem (Sheaf representation for topoi). For any small topos E, there is a sheaf of categories e E on a topological space, such that: (i) E is equivalent to the category of global sections of e E, (ii) every stalk of e E is a hyperlocal topos. Moreover, E is boolean just if every stalk of e E is wellpointed. Before defining the term "hyperlocal," we indicate some of the background of the theorem. The original and most familiar sheaf representations are for commutative rings (see [12, ch. 5] for a survey); e.g. a wellknown theorem due to Grothendieck [9] asserts that every commutative r...
Cosimplicial spaces and cocycles
, 2010
"... This paper is a retelling of the basic homotopy theory of cosimplicial spaces, from a point of view that is informed by sheaf theoretic homotopy theory. The overall plan is to interpolate ideas associated with the injective model structure for cosimplicial spaces with classical results of Bousfield ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
This paper is a retelling of the basic homotopy theory of cosimplicial spaces, from a point of view that is informed by sheaf theoretic homotopy theory. The overall plan is to interpolate ideas associated with the injective model structure for cosimplicial spaces with classical results of Bousfield and Kan. The
Model structures on the category of small double categories, Algebraic and Geometric Topology 8
, 2008
"... Abstract. In this paper we obtain several model structures on DblCat, the category of small double categories. Our model structures have three sources. We first transfer across a categorificationnerve adjunction. Secondly, we view double categories as internal categories in Cat and take as our weak ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
Abstract. In this paper we obtain several model structures on DblCat, the category of small double categories. Our model structures have three sources. We first transfer across a categorificationnerve adjunction. Secondly, we view double categories as internal categories in Cat and take as our weak equivalences various internal equivalences defined via Grothendieck topologies. Thirdly, DblCat inherits a model structure as a category of algebras over a 2monad. Some of these model structures coincide and the different points of view give us further results about cofibrant replacements and cofibrant objects. As part of this program we give explicit descriptions and discuss properties of free double categories, quotient double categories, colimits of double categories, and several nerves
The Ktheory presheaf of spectra
, 2008
"... This paper has evolved from notes for a lecture entitled “ Étale Ktheory: a modern ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
This paper has evolved from notes for a lecture entitled “ Étale Ktheory: a modern