Results 1 
4 of
4
Fast and accurate Polar Fourier transform
 Appl. Comput. Harmon. Anal.
, 2006
"... In a wide range of applied problems of 2D and 3D imaging a continuous formulation of the problem places great emphasis on obtaining and manipulating the Fourier transform in Polar coordinates. However, the translation of continuum ideas into practical work with data sampled on a Cartesian grid is pr ..."
Abstract

Cited by 17 (1 self)
 Add to MetaCart
(Show Context)
In a wide range of applied problems of 2D and 3D imaging a continuous formulation of the problem places great emphasis on obtaining and manipulating the Fourier transform in Polar coordinates. However, the translation of continuum ideas into practical work with data sampled on a Cartesian grid is problematic. In this article we develop a fast high accuracy Polar FFT. For a given twodimensional signal of size N × N, the proposed algorithm’s complexity is O(N^2 log N), just like in a Cartesian 2DFFT. A special feature of our approach is that it involves only 1D equispaced FFT’s and 1D interpolations. A central tool in our method is the pseudoPolar FFT, an FFT where the evaluation frequencies lie in an oversampled set of nonangularly equispaced points. We describe the concept of pseudoPolar domain, including fast forward and inverse transforms. For those interested primarily in Polar FFT’s, the pseudoPolar FFT plays the role of a halfway point—a nearlyPolar system from which conversion to Polar coordinates uses processes relying purely on 1D FFT’s and interpolation operations. We describe the conversion process, and give an error analysis of it. We compare accuracy results obtained by a Cartesianbased unequallysampled FFT method to ours, both algorithms using a smallsupport interpolation and no precompensating, and show marked advantage to the use of the pseudoPolar initial grid.
DirectFourier Reconstruction In Tomography And Synthetic Aperture Radar
 Intl. J. Imaging Sys. and Tech
, 1998
"... We investigate the use of directFourier (DF) image reconstruction in computerized tomography and synthetic aperture radar (SAR). One of our aims is to determine why the convolutionbackprojection (CBP) method is favored over DF methods in tomography, while DF methods are virtually always used in SAR ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
(Show Context)
We investigate the use of directFourier (DF) image reconstruction in computerized tomography and synthetic aperture radar (SAR). One of our aims is to determine why the convolutionbackprojection (CBP) method is favored over DF methods in tomography, while DF methods are virtually always used in SAR. We show that the CBP algorithm is equivalent to DF reconstruction using a Jacobianweighted 2D periodic sinckernel interpolator. This interpolation is not optimal in any sense, which suggests that DF algorithms utilizing optimal interpolators may surpass CBP in image quality. We consider use of two types of DF interpolation: a windowed sinc kernel, and the leastsquares optimal Yen interpolator. Simulations show that reconstructions using the Yen interpolator do not possess the expected visual quality, because of regularization needed to preserve numerical stability. Next, we show that with a concentricsquares sampling scheme, DF interpolation can be performed accurately and efficiently...
Accurate and Fast Discrete Polar Fourier Transform
 in Proc. 37th Asilomar Conf. Signals, Systems & Computers
, 2003
"... In this article we develop a fast high accuracy Polar FFT. For a given twodimensional signal of size N N , the proposed algorithm's complexity is O(N log N), just like in a Cartesian 2DFFT. A special feature of our approach is that it involves only 1D equispaced FFT's and 1D inter ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
(Show Context)
In this article we develop a fast high accuracy Polar FFT. For a given twodimensional signal of size N N , the proposed algorithm's complexity is O(N log N), just like in a Cartesian 2DFFT. A special feature of our approach is that it involves only 1D equispaced FFT's and 1D interpolations. A central tool in our approach is the pseudopolar FFT, an FFT where the evaluation frequencies lie in an oversampled set of nonangularly equispaced points. The pseudopolar FFT plays the role of a halfway point  a nearlypolar system from which conversion to Polar Coordinates uses processes relying purely on interpolation operations. We describe the conversion process, and compare accuracy results obtained by unequallysampled FFT methods to ours and show marked advantage to our approach.