Results 1 
1 of
1
Verifying nonlinear real formulas via sums of squares
 Theorem Proving in Higher Order Logics, TPHOLs 2007, volume 4732 of Lect. Notes in Comp. Sci
, 2007
"... Abstract. Techniques based on sums of squares appear promising as a general approach to the universal theory of reals with addition and multiplication, i.e. verifying Boolean combinations of equations and inequalities. A particularly attractive feature is that suitable ‘sum of squares ’ certificates ..."
Abstract

Cited by 20 (3 self)
 Add to MetaCart
Abstract. Techniques based on sums of squares appear promising as a general approach to the universal theory of reals with addition and multiplication, i.e. verifying Boolean combinations of equations and inequalities. A particularly attractive feature is that suitable ‘sum of squares ’ certificates can be found by sophisticated numerical methods such as semidefinite programming, yet the actual verification of the resulting proof is straightforward even in a highly foundational theorem prover. We will describe our experience with an implementation in HOL Light, noting some successes as well as difficulties. We also describe a new approach to the univariate case that can handle some otherwise difficult examples. 1 Verifying nonlinear formulas over the reals Over the real numbers, there are algorithms that can in principle perform quantifier elimination from arbitrary firstorder formulas built up using addition, multiplication and the usual equality and inequality predicates. A classic example of such a quantifier elimination equivalence is the criterion for a quadratic equation to have a real root: ∀a b c. (∃x. ax 2 + bx + c = 0) ⇔ a = 0 ∧ (b = 0 ⇒ c = 0) ∨ a � = 0 ∧ b 2 ≥ 4ac