Results 1  10
of
16
Rewriting Logic as a Logical and Semantic Framework
, 1993
"... Rewriting logic [72] is proposed as a logical framework in which other logics can be represented, and as a semantic framework for the specification of languages and systems. Using concepts from the theory of general logics [70], representations of an object logic L in a framework logic F are und ..."
Abstract

Cited by 147 (52 self)
 Add to MetaCart
Rewriting logic [72] is proposed as a logical framework in which other logics can be represented, and as a semantic framework for the specification of languages and systems. Using concepts from the theory of general logics [70], representations of an object logic L in a framework logic F are understood as mappings L ! F that translate one logic into the other in a conservative way. The ease with which such maps can be defined for a number of quite different logics of interest, including equational logic, Horn logic with equality, linear logic, logics with quantifiers, and any sequent calculus presentation of a logic for a very general notion of "sequent," is discussed in detail. Using the fact that rewriting logic is reflective, it is often possible to reify inside rewriting logic itself a representation map L ! RWLogic for the finitely presentable theories of L. Such a reification takes the form of a map between the abstract data types representing the finitary theories of...
Institution Morphisms
, 2001
"... Institutions formalize the intuitive notion of logical system, including syntax, semantics, and the relation of satisfaction between them. Our exposition emphasizes the natural way that institutions can support deduction on sentences, and inclusions of signatures, theories, etc.; it also introduces ..."
Abstract

Cited by 58 (18 self)
 Add to MetaCart
Institutions formalize the intuitive notion of logical system, including syntax, semantics, and the relation of satisfaction between them. Our exposition emphasizes the natural way that institutions can support deduction on sentences, and inclusions of signatures, theories, etc.; it also introduces terminology to clearly distinguish several levels of generality of the institution concept. A surprising number of different notions of morphism have been suggested for forming categories with institutions as objects, and an amazing variety of names have been proposed for them. One goal of this paper is to suggest a terminology that is uniform and informative to replace the current chaotic nomenclature; another goal is to investigate the properties and interrelations of these notions in a systematic way. Following brief expositions of indexed categories, diagram categories, twisted relations, and Kan extensions, we demonstrate and then exploit the duality between institution morphisms in the original sense of Goguen and Burstall, and the "plain maps" of Meseguer, obtaining simple uniform proofs of completeness and cocompleteness for both resulting categories. Because of this duality, we prefer the name "comorphism" over "plain map;" moreover, we argue that morphisms are more natural than comorphisms in many cases. We also consider "theoroidal" morphisms and comorphisms, which generalize signatures to theories, based on a theoroidal institution construction, finding that the "maps" of Meseguer are theoroidal comorphisms, while theoroidal morphisms are a new concept. We introduce "forward" and "seminatural" morphisms, and develop some of their properties. Appendices discuss institutions for partial algebra, a variant of order sorted algebra, two versions of hidden algebra, and...
Institutions: An Abstract Framework for Formal Specifications
"... In this chapter we present some basic concepts and results of the theory of institutions, introduced by Goguen and Burstall to formally capture the informal notion of a logical system viewed from a modeltheoretic perspective. We also sketch some possibilities of linking this to more prooforiented ..."
Abstract

Cited by 24 (1 self)
 Add to MetaCart
In this chapter we present some basic concepts and results of the theory of institutions, introduced by Goguen and Burstall to formally capture the informal notion of a logical system viewed from a modeltheoretic perspective. We also sketch some possibilities of linking this to more prooforiented concepts. We argue that the theory of institutions provides an appropriate framework for much of the work on formal software specification and development, as presented in this volume. Many standard logical systems used in particular versions of the algebraic specification paradigm may be viewed as institutions; some examples are given explicitly here, some others are hinted at. Developing (as much as possible) the ideas common to different versions of the algebraic specification paradigm in the framework of an arbitrary institution, and in particular providing a theory of formal specification and software development parameterized by an arbitrary institution rather than having a particular logical system built in, should be beneficial both by helping to avoid repetitious work and by bringing the concepts and results to an
Structured theory presentations and logic representations
 ANNALS OF PURE AND APPLIED LOGIC
, 1994
"... The purpose of a logical framework such as LF is to provide a language for defining logical systems suitable for use in a logicindependent proof development environment. All inferential activity in an object logic (in particular, proof search) is to be conducted in the logical framework via the ..."
Abstract

Cited by 14 (2 self)
 Add to MetaCart
The purpose of a logical framework such as LF is to provide a language for defining logical systems suitable for use in a logicindependent proof development environment. All inferential activity in an object logic (in particular, proof search) is to be conducted in the logical framework via the representation of that logic in the framework. An important tool for controlling search in an object logic, the need for which is motivated by the difficulty of reasoning about large and complex systems, is the use of structured theory presentations. In this paper a rudimentary language of structured theory presentations is presented, and the use of this structure in proof search for an arbitrary object logic is explored. The behaviour of structured theory presentations under representation in a logical framework is studied, focusing on the problem of "lifting" presentations from the object logic to the metalogic of the framework. The topic of imposing structure on logic presentations...
Formalism and Method
, 1999
"... ion level of specifications Once we have given the formal models, we can qualify the abstraction degree of the specification language in the sense how much abstract its specifications can be, and so providing some information about at which points in the development process it may be used. The abs ..."
Abstract

Cited by 14 (4 self)
 Add to MetaCart
ion level of specifications Once we have given the formal models, we can qualify the abstraction degree of the specification language in the sense how much abstract its specifications can be, and so providing some information about at which points in the development process it may be used. The abstraction degree is related to the cardinality of the classes of formal models that are semantics of the specifications. The less abstract specification methods are those where [[SP]] has cardinality 1 or is just an isomorphism class. 2.6.2 Specification semantics The technique used for providing the semantics of specification language is not neutral; indeed such semantics can be given in  A rather direct, explicit and denotational way (e.g., as done by Hoare for CSP, [19]), by exhibiting the relative class of formal models  An indirect or implicit way, say as (1) the limit of a diagram in a category, (2) defining that two specifications are semantically equivalent iff their equality ...
Formal Interoperability
, 1998
"... this paper I briefly sketch recent work on metalogical foundations that seems promising as a conceptual basis on which to achieve the goal of formal interoperability. Specificaly, I will briefly discuss: ..."
Abstract

Cited by 13 (3 self)
 Add to MetaCart
this paper I briefly sketch recent work on metalogical foundations that seems promising as a conceptual basis on which to achieve the goal of formal interoperability. Specificaly, I will briefly discuss:
Combining and Representing Logical Systems
, 1997
"... The paper addresses important problems of building complex logical systems and their representations in universal logics in a systematic way. Following Goguen and Burstall, we adopt the modeltheoretic view of logic as captured in the notion of institution and of parchment (a certain algebraic ..."
Abstract

Cited by 12 (3 self)
 Add to MetaCart
The paper addresses important problems of building complex logical systems and their representations in universal logics in a systematic way. Following Goguen and Burstall, we adopt the modeltheoretic view of logic as captured in the notion of institution and of parchment (a certain algebraic way of presenting institutions). We propose a modified notion of parchment together with a notion of parchment morphism and representation, respectively. We lift formal properties of the categories of institutions and their representations to this level: the category of parchments is complete, and parchment representations may be put together using categorical limits as well. However, parchments provide a more adequate framework for systematic combination of logical systems than institutions. We indicate how the necessary invention for proper combination of various logical features may be introduced either on an ad hoc basis (when putting parchments together using limits in the cat...
Foundations of Heterogeneous Specification
"... We provide a semantic basis for heterogeneous specifications that not only involve different logics, but also different kinds of translations between these. We show that Grothendieck institutions based on spans of (co)morphisms can serve as a unifying framework providing a simple but powerful semant ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
We provide a semantic basis for heterogeneous specifications that not only involve different logics, but also different kinds of translations between these. We show that Grothendieck institutions based on spans of (co)morphisms can serve as a unifying framework providing a simple but powerful semantics for heterogeneous specification.
Representations, Hierarchies, and Graphs of Institutions
, 1996
"... For the specification of abstract data types, quite a number of logical systems have been developed. In this work, we will try to give an overview over this variety. As a prerequisite, we first study notions of {\em representation} and embedding between logical systems, which are formalized as {\em ..."
Abstract

Cited by 5 (4 self)
 Add to MetaCart
For the specification of abstract data types, quite a number of logical systems have been developed. In this work, we will try to give an overview over this variety. As a prerequisite, we first study notions of {\em representation} and embedding between logical systems, which are formalized as {\em institutions} here. Different kinds of representations will lead to a looser or tighter connection of the institutions, with more or less good possibilities of faithfully embedding the semantics and of reusing proof support. In the second part, we then perform a detailed ``empirical'' study of the relations among various wellknown institutions of total, ordersorted and partial algebras and firstorder structures (all with Horn style, i.e.\ universally quantified conditional, axioms). We thus obtain a {\em graph} of institutions, with different kinds of edges according to the different kinds of representations between institutions studied in the first part. We also prove some separation results, leading to a {\em hierarchy} of institutions, which in turn naturally leads to five subgraphs of the above graph of institutions. They correspond to five different levels of expressiveness in the hierarchy, which can be characterized by different kinds of conditional generation principles. We introduce a systematic notation for institutions of total, ordersorted and partial algebras and firstorder structures. The notation closely follows the combination of features that are present in the respective institution. This raises the question whether these combinations of features can be made mathematically precise in some way. In the third part, we therefore study the combination of institutions with the help of socalled parchments (which are certain algebraic presentations of institutions) and parchment morphisms. The present book is a revised version of the author's thesis, where a number of mathematical problems (pointed out by Andrzej Tarlecki) and a number of misuses of the English language (pointed out by Bernd KriegBr\"uckner) have been corrected. Also, the syntax of specifications has been adopted to that of the recently developed Common Algebraic Specification Language {\sc Casl} \cite{CASL/Summary,Mosses97TAPSOFT}.