Results 1  10
of
244
Robust Principal Component Analysis?
, 2009
"... This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank and the sparse co ..."
Abstract

Cited by 553 (26 self)
 Add to MetaCart
This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the ℓ1 norm. This suggests the possibility of a principled approach to robust principal component analysis since our methodology and results assert that one can recover the principal components of a data matrix even though a positive fraction of its entries are arbitrarily corrupted. This extends to the situation where a fraction of the entries are missing as well. We discuss an algorithm for solving this optimization problem, and present applications in the area of video surveillance, where our methodology allows for the detection of objects in a cluttered background, and in the area of face recognition, where it offers a principled way of removing shadows and specularities in images of faces.
A Singular Value Thresholding Algorithm for Matrix Completion
, 2008
"... This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of reco ..."
Abstract

Cited by 539 (20 self)
 Add to MetaCart
This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of recovering a large matrix from a small subset of its entries (the famous Netflix problem). Offtheshelf algorithms such as interior point methods are not directly amenable to large problems of this kind with over a million unknown entries. This paper develops a simple firstorder and easytoimplement algorithm that is extremely efficient at addressing problems in which the optimal solution has low rank. The algorithm is iterative and produces a sequence of matrices {X k, Y k} and at each step, mainly performs a softthresholding operation on the singular values of the matrix Y k. There are two remarkable features making this attractive for lowrank matrix completion problems. The first is that the softthresholding operation is applied to a sparse matrix; the second is that the rank of the iterates {X k} is empirically nondecreasing. Both these facts allow the algorithm to make use of very minimal storage space and keep the computational cost of each iteration low. On
A simpler approach to matrix completion
 the Journal of Machine Learning Research
"... This paper provides the best bounds to date on the number of randomly sampled entries required to reconstruct an unknown low rank matrix. These results improve on prior work by Candès and Recht [4], Candès and Tao [7], and Keshavan, Montanari, and Oh [18]. The reconstruction is accomplished by minim ..."
Abstract

Cited by 162 (7 self)
 Add to MetaCart
This paper provides the best bounds to date on the number of randomly sampled entries required to reconstruct an unknown low rank matrix. These results improve on prior work by Candès and Recht [4], Candès and Tao [7], and Keshavan, Montanari, and Oh [18]. The reconstruction is accomplished by minimizing the nuclear norm, or sum of the singular values, of the hidden matrix subject to agreement with the provided entries. If the underlying matrix satisfies a certain incoherence condition, then the number of entries required is equal to a quadratic logarithmic factor times the number of parameters in the singular value decomposition. The proof of this assertion is short, self contained, and uses very elementary analysis. The novel techniques herein are based on recent work in quantum information theory.
Robust principal component analysis: Exact recovery of corrupted lowrank matrices via convex optimization
 Advances in Neural Information Processing Systems 22
, 2009
"... The supplementary material to the NIPS version of this paper [4] contains a critical error, which was discovered several days before the conference. Unfortunately, it was too late to withdraw the paper from the proceedings. Fortunately, since that time, a correct analysis of the proposed convex prog ..."
Abstract

Cited by 144 (4 self)
 Add to MetaCart
(Show Context)
The supplementary material to the NIPS version of this paper [4] contains a critical error, which was discovered several days before the conference. Unfortunately, it was too late to withdraw the paper from the proceedings. Fortunately, since that time, a correct analysis of the proposed convex programming relaxation has been developed by Emmanuel Candes of Stanford University. That analysis is reported in a joint paper, Robust Principal Component Analysis? by Emmanuel Candes, Xiaodong Li, Yi Ma and John Wright,
Robust Subspace Segmentation by LowRank Representation
"... We propose lowrank representation (LRR) to segment data drawn from a union of multiple linear (or affine) subspaces. Given a set of data vectors, LRR seeks the lowestrank representation among all the candidates that represent all vectors as the linear combination of the bases in a dictionary. Unlik ..."
Abstract

Cited by 138 (24 self)
 Add to MetaCart
(Show Context)
We propose lowrank representation (LRR) to segment data drawn from a union of multiple linear (or affine) subspaces. Given a set of data vectors, LRR seeks the lowestrank representation among all the candidates that represent all vectors as the linear combination of the bases in a dictionary. Unlike the wellknown sparse representation (SR), which computes the sparsest representation of each data vector individually, LRR aims at finding the lowestrank representation of a collection of vectors jointly. LRR better captures the global structure of data, giving a more effective tool for robust subspace segmentation from corrupted data. Both theoretical and experimental results show that LRR is a promising tool for subspace segmentation. 1.
Robust Recovery of Subspace Structures by LowRank Representation
"... In this work we address the subspace recovery problem. Given a set of data samples (vectors) approximately drawn from a union of multiple subspaces, our goal is to segment the samples into their respective subspaces and correct the possible errors as well. To this end, we propose a novel method ter ..."
Abstract

Cited by 119 (25 self)
 Add to MetaCart
(Show Context)
In this work we address the subspace recovery problem. Given a set of data samples (vectors) approximately drawn from a union of multiple subspaces, our goal is to segment the samples into their respective subspaces and correct the possible errors as well. To this end, we propose a novel method termed LowRank Representation (LRR), which seeks the lowestrank representation among all the candidates that can represent the data samples as linear combinations of the bases in a given dictionary. It is shown that LRR well solves the subspace recovery problem: when the data is clean, we prove that LRR exactly captures the true subspace structures; for the data contaminated by outliers, we prove that under certain conditions LRR can exactly recover the row space of the original data and detect the outlier as well; for the data corrupted by arbitrary errors, LRR can also approximately recover the row space with theoretical guarantees. Since the subspace membership is provably determined by the row space, these further imply that LRR can perform robust subspace segmentation and error correction, in an efficient way.
Interiorpoint method for nuclear norm approximation with application to system identification
"... ..."
Structured compressed sensing: From theory to applications
 IEEE TRANS. SIGNAL PROCESS
, 2011
"... Compressed sensing (CS) is an emerging field that has attracted considerable research interest over the past few years. Previous review articles in CS limit their scope to standard discretetodiscrete measurement architectures using matrices of randomized nature and signal models based on standard ..."
Abstract

Cited by 98 (15 self)
 Add to MetaCart
Compressed sensing (CS) is an emerging field that has attracted considerable research interest over the past few years. Previous review articles in CS limit their scope to standard discretetodiscrete measurement architectures using matrices of randomized nature and signal models based on standard sparsity. In recent years, CS has worked its way into several new application areas. This, in turn, necessitates a fresh look on many of the basics of CS. The random matrix measurement operator must be replaced by more structured sensing architectures that correspond to the characteristics of feasible acquisition hardware. The standard sparsity prior has to be extended to include a much richer class of signals and to encode broader data models, including continuoustime signals. In our overview, the theme is exploiting signal and measurement structure in compressive sensing. The prime focus is bridging theory and practice; that is, to pinpoint the potential of structured CS strategies to emerge from the math to the hardware. Our summary highlights new directions as well as relations to more traditional CS, with the hope of serving both as a review to practitioners wanting to join this emerging field, and as a reference for researchers that attempts to put some of the existing ideas in perspective of practical applications.
Stable principal component pursuit
 In Proc. of International Symposium on Information Theory
, 2010
"... We consider the problem of recovering a target matrix that is a superposition of lowrank and sparse components, from a small set of linear measurements. This problem arises in compressed sensing of structured highdimensional signals such as videos and hyperspectral images, as well as in the analys ..."
Abstract

Cited by 94 (3 self)
 Add to MetaCart
(Show Context)
We consider the problem of recovering a target matrix that is a superposition of lowrank and sparse components, from a small set of linear measurements. This problem arises in compressed sensing of structured highdimensional signals such as videos and hyperspectral images, as well as in the analysis of transformation invariant lowrank structure recovery. We analyze the performance of the natural convex heuristic for solving this problem, under the assumption that measurements are chosen uniformly at random. We prove that this heuristic exactly recovers lowrank and sparse terms, provided the number of observations exceeds the number of intrinsic degrees of freedom of the component signals by a polylogarithmic factor. Our analysis introduces several ideas that may be of independent interest for the more general problem of compressed sensing and decomposing superpositions of multiple structured signals. 1