Results 1  10
of
251
Using Bayesian networks to analyze expression data
 Journal of Computational Biology
, 2000
"... DNA hybridization arrays simultaneously measure the expression level for thousands of genes. These measurements provide a “snapshot ” of transcription levels within the cell. A major challenge in computational biology is to uncover, from such measurements, gene/protein interactions and key biologica ..."
Abstract

Cited by 1077 (18 self)
 Add to MetaCart
DNA hybridization arrays simultaneously measure the expression level for thousands of genes. These measurements provide a “snapshot ” of transcription levels within the cell. A major challenge in computational biology is to uncover, from such measurements, gene/protein interactions and key biological features of cellular systems. In this paper, we propose a new framework for discovering interactions between genes based on multiple expression measurements. This framework builds on the use of Bayesian networks for representing statistical dependencies. A Bayesian network is a graphbased model of joint multivariate probability distributions that captures properties of conditional independence between variables. Such models are attractive for their ability to describe complex stochastic processes and because they provide a clear methodology for learning from (noisy) observations. We start by showing how Bayesian networks can describe interactions between genes. We then describe a method for recovering gene interactions from microarray data using tools for learning Bayesian networks. Finally, we demonstrate this method on the S. cerevisiae cellcycle measurements of Spellman et al. (1998). Key words: gene expression, microarrays, Bayesian methods. 1.
The minimum description length principle in coding and modeling
 IEEE TRANS. INFORM. THEORY
, 1998
"... We review the principles of Minimum Description Length and Stochastic Complexity as used in data compression and statistical modeling. Stochastic complexity is formulated as the solution to optimum universal coding problems extending Shannon’s basic source coding theorem. The normalized maximized ..."
Abstract

Cited by 396 (17 self)
 Add to MetaCart
(Show Context)
We review the principles of Minimum Description Length and Stochastic Complexity as used in data compression and statistical modeling. Stochastic complexity is formulated as the solution to optimum universal coding problems extending Shannon’s basic source coding theorem. The normalized maximized likelihood, mixture, and predictive codings are each shown to achieve the stochastic complexity to within asymptotically vanishing terms. We assess the performance of the minimum description length criterion both from the vantage point of quality of data compression and accuracy of statistical inference. Context tree modeling, density estimation, and model selection in Gaussian linear regression serve as examples.
Discovering objects and their location in images
 In ICCV
, 2005
"... We seek to discover the object categories depicted in a set of unlabelled images. We achieve this using a model developed in the statistical text literature: probabilistic Latent Semantic Analysis (pLSA). In text analysis this is used to discover topics in a corpus using the bagofwords document re ..."
Abstract

Cited by 271 (9 self)
 Add to MetaCart
(Show Context)
We seek to discover the object categories depicted in a set of unlabelled images. We achieve this using a model developed in the statistical text literature: probabilistic Latent Semantic Analysis (pLSA). In text analysis this is used to discover topics in a corpus using the bagofwords document representation. Here we treat object categories as topics, so that an image containing instances of several categories is modeled as a mixture of topics. The model is applied to images by using a visual analogue of a word, formed by vector quantizing SIFTlike region descriptors. The topic discovery approach successfully translates to the visual domain: for a small set of objects, we show that both the object categories and their approximate spatial layout are found without supervision. Performance of this unsupervised method is compared to the supervised approach of Fergus et al. [8] on a set of unseen images containing only one object per image. We also extend the bagofwords vocabulary to include ‘doublets ’ which encode spatially local cooccurring regions. It is demonstrated that this extended vocabulary gives a cleaner image segmentation. Finally, the classification and segmentation methods are applied to a set of images containing multiple objects per image. These results demonstrate that we can successfully build object class models from an unsupervised analysis of images. 1.
Analysis Of Multiresolution Image Denoising Schemes Using GeneralizedGaussian Priors
 IEEE TRANS. INFO. THEORY
, 1998
"... In this paper, we investigate various connections between wavelet shrinkage methods in image processing and Bayesian estimation using Generalized Gaussian priors. We present fundamental properties of the shrinkage rules implied by Generalized Gaussian and other heavytailed priors. This allows us to ..."
Abstract

Cited by 216 (9 self)
 Add to MetaCart
In this paper, we investigate various connections between wavelet shrinkage methods in image processing and Bayesian estimation using Generalized Gaussian priors. We present fundamental properties of the shrinkage rules implied by Generalized Gaussian and other heavytailed priors. This allows us to show a simple relationship between differentiability of the logprior at zero and the sparsity of the estimates, as well as an equivalence between universal thresholding schemes and Bayesian estimation using a certain Generalized Gaussian prior.
A Guide to the Literature on Learning Probabilistic Networks From Data
, 1996
"... This literature review discusses different methods under the general rubric of learning Bayesian networks from data, and includes some overlapping work on more general probabilistic networks. Connections are drawn between the statistical, neural network, and uncertainty communities, and between the ..."
Abstract

Cited by 203 (0 self)
 Add to MetaCart
This literature review discusses different methods under the general rubric of learning Bayesian networks from data, and includes some overlapping work on more general probabilistic networks. Connections are drawn between the statistical, neural network, and uncertainty communities, and between the different methodological communities, such as Bayesian, description length, and classical statistics. Basic concepts for learning and Bayesian networks are introduced and methods are then reviewed. Methods are discussed for learning parameters of a probabilistic network, for learning the structure, and for learning hidden variables. The presentation avoids formal definitions and theorems, as these are plentiful in the literature, and instead illustrates key concepts with simplified examples. Keywords Bayesian networks, graphical models, hidden variables, learning, learning structure, probabilistic networks, knowledge discovery. I. Introduction Probabilistic networks or probabilistic gra...
Sparse Geometric Image Representations with Bandelets
, 2004
"... This paper introduces a new class of bases, called bandelet bases, which decompose the image along multiscale vectors that are elongated in the direction of a geometric flow. This geometric flow indicates directions in which the image grey levels have regular variations. The image decomposition in ..."
Abstract

Cited by 196 (4 self)
 Add to MetaCart
This paper introduces a new class of bases, called bandelet bases, which decompose the image along multiscale vectors that are elongated in the direction of a geometric flow. This geometric flow indicates directions in which the image grey levels have regular variations. The image decomposition in a bandelet basis is implemented with a fast subband filtering algorithm. Bandelet bases lead to optimal approximation rates for geometrically regular images. For image compression and noise removal applications, the geometric flow is optimized with fast algorithms, so that the resulting bandelet basis produces a minimum distortion. Comparisons are made with wavelet image compression and noise removal algorithms.
Discovering object categories in image collections
, 2004
"... Given a set of images containing multiple object categories, we seek to discover those categories and their image locations without supervision. We achieve this using generative models from the statistical text literature: probabilistic Latent Semantic Analysis (pLSA), and Latent Dirichlet Allocatio ..."
Abstract

Cited by 193 (12 self)
 Add to MetaCart
(Show Context)
Given a set of images containing multiple object categories, we seek to discover those categories and their image locations without supervision. We achieve this using generative models from the statistical text literature: probabilistic Latent Semantic Analysis (pLSA), and Latent Dirichlet Allocation (LDA). In text analysis these are used to discover topics in a corpus using the bagofwords document representation. Here we discover topics as object categories, so that an image containing instances of several categories is modelled as a mixture of topics. The models are applied to images by using a visual analogue of a word, formed by vector quantizing SIFT like region descriptors. We investigate a set of increasingly demanding scenarios, starting with image sets containing only two object categories through to sets containing multiple categories (including airplanes, cars, faces, motorbikes, spotted cats) and background clutter. The object categories sample both intraclass and scale variation, and both the categories and their approximate spatial layout are found without supervision. We also demonstrate classification of unseen images and images containing multiple objects. Performance of the proposed unsupervised method is compared to the semisupervised approach of [7].
InformationTheoretic Determination of Minimax Rates of Convergence
 Ann. Stat
, 1997
"... In this paper, we present some general results determining minimax bounds on statistical risk for density estimation based on certain informationtheoretic considerations. These bounds depend only on metric entropy conditions and are used to identify the minimax rates of convergence. ..."
Abstract

Cited by 158 (24 self)
 Add to MetaCart
In this paper, we present some general results determining minimax bounds on statistical risk for density estimation based on certain informationtheoretic considerations. These bounds depend only on metric entropy conditions and are used to identify the minimax rates of convergence.
Toward a method of selecting among computational models of cognition
 Psychological Review
, 2002
"... The question of how one should decide among competing explanations of data is at the heart of the scientific enterprise. Computational models of cognition are increasingly being advanced as explanations of behavior. The success of this line of inquiry depends on the development of robust methods to ..."
Abstract

Cited by 152 (16 self)
 Add to MetaCart
The question of how one should decide among competing explanations of data is at the heart of the scientific enterprise. Computational models of cognition are increasingly being advanced as explanations of behavior. The success of this line of inquiry depends on the development of robust methods to guide the evaluation and selection of these models. This article introduces a method of selecting among mathematical models of cognition known as minimum description length, which provides an intuitive and theoretically wellgrounded understanding of why one model should be chosen. A central but elusive concept in model selection, complexity, can also be derived with the method. The adequacy of the method is demonstrated in 3 areas of cognitive modeling: psychophysics, information integration, and categorization. How should one choose among competing theoretical explanations of data? This question is at the heart of the scientific enterprise, regardless of whether verbal models are being tested in an experimental setting or computational models are being evaluated in simulations. A number of criteria have been proposed to assist in this endeavor, summarized nicely by Jacobs and Grainger
Some PACBayesian Theorems
 Machine Learning
, 1998
"... This paper gives PAC guarantees for "Bayesian" algorithms  algorithms that optimize risk minimization expressions involving a prior probability and a likelihood for the training data. PACBayesian algorithms are motivated by a desire to provide an informative prior encoding informat ..."
Abstract

Cited by 141 (4 self)
 Add to MetaCart
(Show Context)
This paper gives PAC guarantees for "Bayesian" algorithms  algorithms that optimize risk minimization expressions involving a prior probability and a likelihood for the training data. PACBayesian algorithms are motivated by a desire to provide an informative prior encoding information about the expected experimental setting but still having PAC performance guarantees over all IID settings. The PACBayesian theorems given here apply to an arbitrary prior measure on an arbitrary concept space. These theorems provide an alternative to the use of VC dimension in proving PAC bounds for parameterized concepts. 1 INTRODUCTION Much of modern learning theory can be divided into two seemingly separate areas  Bayesian inference and PAC learning. Both areas study learning algorithms which take as input training data and produce as output a concept or model which can then be tested on test data. In both areas learning algorithms are associated with correctness theorems. PAC correct...