Results 1  10
of
51
Rational approximations to rational models: Alternative algorithms for category learning
"... Rational models of cognition typically consider the abstract computational problems posed by the environment, assuming that people are capable of optimally solving those problems. This differs from more traditional formal models of cognition, which focus on the psychological processes responsible fo ..."
Abstract

Cited by 60 (17 self)
 Add to MetaCart
(Show Context)
Rational models of cognition typically consider the abstract computational problems posed by the environment, assuming that people are capable of optimally solving those problems. This differs from more traditional formal models of cognition, which focus on the psychological processes responsible for behavior. A basic challenge for rational models is thus explaining how optimal solutions can be approximated by psychological processes. We outline a general strategy for answering this question, namely to explore the psychological plausibility of approximation algorithms developed in computer science and statistics. In particular, we argue that Monte Carlo methods provide a source of “rational process models” that connect optimal solutions to psychological processes. We support this argument through a detailed example, applying this approach to Anderson’s (1990, 1991) Rational Model of Categorization (RMC), which involves a particularly challenging computational problem. Drawing on a connection between the RMC and ideas from nonparametric Bayesian statistics, we propose two alternative algorithms for approximate inference in this model. The algorithms we consider include Gibbs sampling, a procedure
Theorybased causal induction
 In
, 2003
"... Inducing causal relationships from observations is a classic problem in scientific inference, statistics, and machine learning. It is also a central part of human learning, and a task that people perform remarkably well given its notorious difficulties. People can learn causal structure in various s ..."
Abstract

Cited by 51 (18 self)
 Add to MetaCart
(Show Context)
Inducing causal relationships from observations is a classic problem in scientific inference, statistics, and machine learning. It is also a central part of human learning, and a task that people perform remarkably well given its notorious difficulties. People can learn causal structure in various settings, from diverse forms of data: observations of the cooccurrence frequencies between causes and effects, interactions between physical objects, or patterns of spatial or temporal coincidence. These different modes of learning are typically thought of as distinct psychological processes and are rarely studied together, but at heart they present the same inductive challenge—identifying the unobservable mechanisms that generate observable relations between variables, objects, or events, given only sparse and limited data. We present a computationallevel analysis of this inductive problem and a framework for its solution, which allows us to model all these forms of causal learning in a common language. In this framework, causal induction is the product of domaingeneral statistical inference guided by domainspecific prior knowledge, in the form of an abstract causal theory. We identify 3 key aspects of abstract prior knowledge—the ontology of entities, properties, and relations that organizes a domain; the plausibility of specific causal relationships; and the functional form of those relationships—and show how they provide the constraints that people need to induce useful causal models from sparse data.
Modeling Human Performance in Statistical Word Segmentation
"... What mechanisms support the ability of human infants, adults, and other primates to identify words from fluent speech using distributional regularities? In order to better characterize this ability, we collected data from adults in an artificial language segmentation task similar to Saffran, Newport ..."
Abstract

Cited by 47 (16 self)
 Add to MetaCart
(Show Context)
What mechanisms support the ability of human infants, adults, and other primates to identify words from fluent speech using distributional regularities? In order to better characterize this ability, we collected data from adults in an artificial language segmentation task similar to Saffran, Newport, and Aslin (1996) in which the length of sentences was systematically varied between groups of participants. We then compared the fit of a variety of computational models— including simple statistical models of transitional probability and mutual information, a clustering model based on mutual information by Swingley (2005), PARSER (Perruchet & Vintner, 1998), and a Bayesian model. We found that while all models were able to successfully complete the task, fit to the human data varied considerably, with the Bayesian model achieving the highest correlation with our results.
Bayesian Fundamentalism or Enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition
 Behavioral and Brain Sciences
, 2011
"... To be published in Behavioral and Brain Sciences (in press) ..."
Abstract

Cited by 41 (1 self)
 Add to MetaCart
(Show Context)
To be published in Behavioral and Brain Sciences (in press)
One and done? Optimal decisions from very few samples
 Cognitive Science Society
, 2009
"... In many situations human behavior approximates that of a Bayesian ideal observer, suggesting that, at some level, cognition can be described as Bayesian inference. However, a number of findings have highlighted an intriguing mismatch between human behavior and that predicted by Bayesian inference: p ..."
Abstract

Cited by 39 (12 self)
 Add to MetaCart
(Show Context)
In many situations human behavior approximates that of a Bayesian ideal observer, suggesting that, at some level, cognition can be described as Bayesian inference. However, a number of findings have highlighted an intriguing mismatch between human behavior and that predicted by Bayesian inference: people often appear to make judgments based on a few samples from a probability distribution, rather than the full distribution. Although samplebased approximations are a common implementation of Bayesian inference, the very limited number of samples used by humans seems to be insufficient to approximate the required probability distributions. Here we consider this discrepancy in the broader framework of statistical decision theory, and ask: if people were making decisions based on samples, but samples were costly, how many samples should people use? We find that under reasonable assumptions about how long it takes to produce a sample, locally suboptimal decisions based on few samples are globally optimal. These results reconcile a large body of work showing sampling, or probabilitymatching, behavior with the hypothesis that human cognition is well described as Bayesian inference, and suggest promising future directions for studies of resourceconstrained cognition.
Exemplar models as a mechanism for performing Bayesian inference
"... Probabilistic models have recently received much attention as accounts of human cognition. problems behind cognitive tasks and their optimal solutions, rather than considering mechanisms that could implement these solutions. Exemplar models are a successful class of psychological process models that ..."
Abstract

Cited by 27 (7 self)
 Add to MetaCart
Probabilistic models have recently received much attention as accounts of human cognition. problems behind cognitive tasks and their optimal solutions, rather than considering mechanisms that could implement these solutions. Exemplar models are a successful class of psychological process models that use an inventory of stored examples to solve problems such as identification, categorization, and function learning. We show that exemplar models can be used to perform a sophisticated form of Monte Carlo approximation known as importance sampling, and thus provide a way to perform approximate Bayesian inference. Simulations of Bayesian inference in speech perception, generalization along a single dimension, making predictions about everyday events, concept learning, and reconstruction from memory show that exemplar models can often account for human performance with only a few exemplars, for both simple and relatively complex prior distributions. These results suggest that exemplar models provide a possible mechanism for implementing at least some forms of Bayesian inference. Exemplar models and Bayesian inference 3 Exemplar models as a mechanism for performing Bayesian inference
Online learning mechanisms for bayesian models of word segmentation. Research on Language and Computation, 8(2), 107– 132. (special issue on computational models of language acquisition
 In Proceedings of the 34th
, 2011
"... © The Author(s) 2011. This article is published with open access at Springerlink.com Abstract In recent years, Bayesian models have become increasingly popular as a way of understanding human cognition. Ideal learner Bayesian models assume that cognition can be usefully understood as optimal behavio ..."
Abstract

Cited by 15 (7 self)
 Add to MetaCart
(Show Context)
© The Author(s) 2011. This article is published with open access at Springerlink.com Abstract In recent years, Bayesian models have become increasingly popular as a way of understanding human cognition. Ideal learner Bayesian models assume that cognition can be usefully understood as optimal behavior under uncertainty, a hypothesis that has been supported by a number of modeling studies across various domains (e.g., Griffiths and Tenenbaum, Cognitive Psychology, 51, 354–384, 2005; Xu and Tenenbaum, Psychological Review, 114, 245–272, 2007). The models in these studies aim to explain why humans behave as they do given the task and data they encounter, but typically avoid some questions addressed by more traditional psychological models, such as how the observed behavior is produced given constraints on memory and processing. Here, we use the task of word segmentation as a case study for investigating these questions within a Bayesian framework. We consider some limitations of the infant learner, and develop several online learning algorithms that take these limitations into account. Each algorithm can be viewed as a different method of approximating the same ideal learner. When tested on corpora of English childdirected speech, we find that the constrained learner’s behavior depends nontrivially on how the learner’s limitations are implemented. Interestingly, sometimes biases that are helpful to an ideal learner hinder a constrained learner, and in a few cases, constrained learners perform equivalently or better than the ideal learner. This suggests that the transition from a computationallevel solution for acquisition to an algorithmiclevel one is not straightforward.
Seeking Confirmation Is Rational for Deterministic Hypotheses
"... The tendency to test outcomes that are predicted by our current theory (the confirmation bias) is one of the bestknown biases of human decision making. We prove that the confirmation bias is an optimal strategy for testing hypotheses when those hypotheses are deterministic, each making a single pre ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
(Show Context)
The tendency to test outcomes that are predicted by our current theory (the confirmation bias) is one of the bestknown biases of human decision making. We prove that the confirmation bias is an optimal strategy for testing hypotheses when those hypotheses are deterministic, each making a single prediction about the next event in a sequence. Our proof applies for two normative standards commonly used for evaluating hypothesis testing: maximizing expected information gain and maximizing the probability of falsifying the current hypothesis. This analysis rests on two assumptions: (a) that people predict the next event in a sequence in a way that is consistent with Bayesian inference; and (b) when testing hypotheses, people test the hypothesis to which they assign highest posterior probability. We present four behavioral experiments that support these assumptions, showing that a simple Bayesian model can capture people’s predictions about numerical sequences (Experiments 1 and 2), and that we can alter the hypotheses that people choose to test by manipulating the prior probability of those hypotheses (Experiments 3 and 4).
Perceptual multistability as Markov Chain Monte Carlo inference
 Advances in Neural Information Processing Systems 22
, 2009
"... While many perceptual and cognitive phenomena are well described in terms of Bayesian inference, the necessary computations are intractable at the scale of realworld tasks, and it remains unclear how the human mind approximates Bayesian computations algorithmically. We explore the proposal that for ..."
Abstract

Cited by 9 (4 self)
 Add to MetaCart
(Show Context)
While many perceptual and cognitive phenomena are well described in terms of Bayesian inference, the necessary computations are intractable at the scale of realworld tasks, and it remains unclear how the human mind approximates Bayesian computations algorithmically. We explore the proposal that for some tasks, humans use a form of Markov Chain Monte Carlo to approximate the posterior distribution over hidden variables. As a case study, we show how several phenomena of perceptual multistability can be explained as MCMC inference in simple graphical models for lowlevel vision. 1
Rational eye movements in reading combining uncertainty about previous words with contextual probability
 In Proc. 23rd annual conference of the Cognitive Science Society
, 2010
"... about previous words with contextual probability ..."
(Show Context)