Results 1  10
of
44
Bayes Factors
, 1995
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 981 (70 self)
 Add to MetaCart
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null is onehalf. Although there has been much discussion of Bayesian hypothesis testing in the context of criticism of P values, less attention has been given to the Bayes factor as a practical tool of applied statistics. In this paper we review and discuss the uses of Bayes factors in the context of five scientific applications in genetics, sports, ecology, sociology and psychology.
Bayesian Model Averaging for Linear Regression Models
 Journal of the American Statistical Association
, 1997
"... We consider the problem of accounting for model uncertainty in linear regression models. Conditioning on a single selected model ignores model uncertainty, and thus leads to the underestimation of uncertainty when making inferences about quantities of interest. A Bayesian solution to this problem in ..."
Abstract

Cited by 184 (13 self)
 Add to MetaCart
We consider the problem of accounting for model uncertainty in linear regression models. Conditioning on a single selected model ignores model uncertainty, and thus leads to the underestimation of uncertainty when making inferences about quantities of interest. A Bayesian solution to this problem involves averaging over all possible models (i.e., combinations of predictors) when making inferences about quantities of
Bayes factors and model uncertainty
 DEPARTMENT OF STATISTICS, UNIVERSITY OFWASHINGTON
, 1993
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 89 (6 self)
 Add to MetaCart
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null is onehalf. Although there has been much discussion of Bayesian hypothesis testing in the context of criticism of Pvalues, less attention has been given to the Bayes factor as a practical tool of applied statistics. In this paper we review and discuss the uses of Bayes factors in the context of five scientific applications. The points we emphasize are: from Jeffreys's Bayesian point of view, the purpose of hypothesis testing is to evaluate the evidence in favor of a scientific theory; Bayes factors offer a way of evaluating evidence in favor ofa null hypothesis; Bayes factors provide a way of incorporating external information into the evaluation of evidence about a hypothesis; Bayes factors are very general, and do not require alternative models to be nested; several techniques are available for computing Bayes factors, including asymptotic approximations which are easy to compute using the output from standard packages that maximize likelihoods; in "nonstandard " statistical models that do not satisfy common regularity conditions, it can be technically simpler to calculate Bayes factors than to derive nonBayesian significance
Model Selection and Accounting for Model Uncertainty in Linear Regression Models
, 1993
"... We consider the problems of variable selection and accounting for model uncertainty in linear regression models. Conditioning on a single selected model ignores model uncertainty, and thus leads to the underestimation of uncertainty when making inferences about quantities of interest. The complete B ..."
Abstract

Cited by 47 (6 self)
 Add to MetaCart
We consider the problems of variable selection and accounting for model uncertainty in linear regression models. Conditioning on a single selected model ignores model uncertainty, and thus leads to the underestimation of uncertainty when making inferences about quantities of interest. The complete Bayesian solution to this problem involves averaging over all possible models when making inferences about quantities of interest. This approach is often not practical. In this paper we offer two alternative approaches. First we describe a Bayesian model selection algorithm called "Occam's "Window" which involves averaging over a reduced set of models. Second, we describe a Markov chain Monte Carlo approach which directly approximates the exact solution. Both these model averaging procedures provide better predictive performance than any single model which might reasonably have been selected. In the extreme case where there are many candidate predictors but there is no relationship between any of them and the response, standard variable selection procedures often choose some subset of variables that yields a high R² and a highly significant overall F value. We refer to this unfortunate phenomenon as "Freedman's Paradox" (Freedman, 1983). In this situation, Occam's vVindow usually indicates the null model as the only one to be considered, or else a small number of models including the null model, thus largely resolving the paradox.
Accounting for Model Uncertainty in Survival Analysis Improves Predictive Performance
 In Bayesian Statistics 5
, 1995
"... Survival analysis is concerned with finding models to predict the survival of patients or to assess the efficacy of a clinical treatment. A key part of the modelbuilding process is the selection of the predictor variables. It is standard to use a stepwise procedure guided by a series of significanc ..."
Abstract

Cited by 39 (12 self)
 Add to MetaCart
Survival analysis is concerned with finding models to predict the survival of patients or to assess the efficacy of a clinical treatment. A key part of the modelbuilding process is the selection of the predictor variables. It is standard to use a stepwise procedure guided by a series of significance tests to select a single model, and then to make inference conditionally on the selected model. However, this ignores model uncertainty, which can be substantial. We review the standard Bayesian model averaging solution to this problem and extend it to survival analysis, introducing partial Bayes factors to do so for the Cox proportional hazards model. In two examples, taking account of model uncertainty enhances predictive performance, to an extent that could be clinically useful. 1 Introduction From 1974 to 1984 the Mayo Clinic conducted a doubleblinded randomized clinical trial involving 312 patients to compare the drug DPCA with a placebo in the treatment of primary biliary cirrhosis...
Deciding Between Competition and Collusion
 Review of Economics and Statistics
"... Abstract—We develop an approach to identify and test for bid rigging in procurement auctions. First, we introduce a general auction model with asymmetric bidders. Second, we study the problem of identi � cation in our model. We state a set of conditions that are both necessary and suf � cient for a ..."
Abstract

Cited by 37 (4 self)
 Add to MetaCart
Abstract—We develop an approach to identify and test for bid rigging in procurement auctions. First, we introduce a general auction model with asymmetric bidders. Second, we study the problem of identi � cation in our model. We state a set of conditions that are both necessary and suf � cient for a distribution of bids to be generated by a model with competitive bidding. Third, we discuss how to elicit a prior distribution over a � rm’s structural cost parameters from industry experts. Given this prior distribution, we use Bayes’s theorem to compare competitive and collusive models of industry equilibrium. Finally, we apply our methodology to a data set of bidding by construction � rms in the Midwest. The techniques we propose are not computationally demanding, use � exible functional forms, and can be programmed using most standard statistical packages. I.
Combining probability distributions from dependent information sources
 Management Sci
, 1981
"... Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at ..."
Abstract

Cited by 33 (1 self)
 Add to MetaCart
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
Statistical Methods for Eliciting Probability Distributions
 Journal of the American Statistical Association
, 2005
"... Elicitation is a key task for subjectivist Bayesians. While skeptics hold that it cannot (or perhaps should not) be done, in practice it brings statisticians closer to their clients and subjectmatterexpert colleagues. This paper reviews the stateoftheart, reflecting the experience of statisticia ..."
Abstract

Cited by 32 (1 self)
 Add to MetaCart
Elicitation is a key task for subjectivist Bayesians. While skeptics hold that it cannot (or perhaps should not) be done, in practice it brings statisticians closer to their clients and subjectmatterexpert colleagues. This paper reviews the stateoftheart, reflecting the experience of statisticians informed by the fruits of a long line of psychological research into how people represent uncertain information cognitively, and how they respond to questions about that information. In a discussion of the elicitation process, the first issue to address is what it means for an elicitation to be successful, i.e. what criteria should be employed? Our answer is that a successful elicitation faithfully represents the opinion of the person being elicited. It is not necessarily “true ” in some objectivistic sense, and cannot be judged that way. We see elicitation as simply part of the process of statistical modeling. Indeed in a hierarchical model it is ambiguous at which point the likelihood ends and the prior begins. Thus the same kinds of judgment that inform statistical modeling in general also inform elicitation of prior distributions.
Parameter priors for directed acyclic graphical models and the characterization of several probability distributions
 MICROSOFT RESEARCH, ADVANCED TECHNOLOGY DIVISION
, 1999
"... We show that the only parameter prior for complete Gaussian DAG models that satisfies global parameter independence, complete model equivalence, and some weak regularity assumptions, is the normalWishart distribution. Our analysis is based on the following new characterization of the Wishart distri ..."
Abstract

Cited by 26 (1 self)
 Add to MetaCart
We show that the only parameter prior for complete Gaussian DAG models that satisfies global parameter independence, complete model equivalence, and some weak regularity assumptions, is the normalWishart distribution. Our analysis is based on the following new characterization of the Wishart distribution: let W be an n × n, n ≥ 3, positivedefinite symmetric matrix of random variables and f(W) be a pdf of W. Then, f(W) is a Wishart distribution if and only if W11 − W12W −1 is independent 22 W ′ 12 of {W12, W22} for every block partitioning
A method for simultaneous variable selection and outlier identification in linear regression
 COMPUTATIONAL STATISTICS & DATA ANALYSIS
, 1996
"... ..."