Results 1  10
of
684
Image denoising using a scale mixture of Gaussians in the wavelet domain
 IEEE Trans Image Processing
, 2003
"... Abstract—We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussi ..."
Abstract

Cited by 350 (18 self)
 Add to MetaCart
Abstract—We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vector and a hidden positive scalar multiplier. The latter modulates the local variance of the coefficients in the neighborhood, and is thus able to account for the empirically observed correlation between the coefficient amplitudes. Under this model, the Bayesian least squares estimate of each coefficient reduces to a weighted average of the local linear estimates over all possible values of the hidden multiplier variable. We demonstrate through simulations with images contaminated by additive white Gaussian noise that the performance of this method substantially surpasses that of previously published methods, both visually and in terms of mean squared error.
Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
, 2001
"... Variable selection is fundamental to highdimensional statistical modeling, including nonparametric regression. Many approaches in use are stepwise selection procedures, which can be computationally expensive and ignore stochastic errors in the variable selection process. In this article, penalized ..."
Abstract

Cited by 346 (27 self)
 Add to MetaCart
Variable selection is fundamental to highdimensional statistical modeling, including nonparametric regression. Many approaches in use are stepwise selection procedures, which can be computationally expensive and ignore stochastic errors in the variable selection process. In this article, penalized likelihood approaches are proposed to handle these kinds of problems. The proposed methods select variables and estimate coefficients simultaneously. Hence they enable us to construct confidence intervals for estimated parameters. The proposed approaches are distinguished from others in that the penalty functions are symmetric, nonconcave on (0, ∞), and have singularities at the origin to produce sparse solutions. Furthermore, the penalty functions should be bounded by a constant to reduce bias and satisfy certain conditions to yield continuous solutions. A new algorithm is proposed for optimizing penalized likelihood functions. The proposed ideas are widely applicable. They are readily applied to a variety of parametric models such as generalized linear models and robust regression models. They can also be applied easily to nonparametric modeling by using wavelets and splines. Rates of convergence of the proposed penalized likelihood estimators are established. Furthermore, with proper choice of regularization parameters, we show that the proposed estimators perform as well as the oracle procedure in variable selection; namely, they work as well as if the correct submodel were known. Our simulation shows that the newly proposed methods compare favorably with other variable selection techniques. Furthermore, the standard error formulas are tested to be accurate enough for practical applications.
A Practical Guide to Wavelet Analysis
, 1998
"... A practical stepbystep guide to wavelet analysis is given, with examples taken from time series of the El Nio Southern Oscillation (ENSO). The guide includes a comparison to the windowed Fourier transform, the choice of an appropriate wavelet basis function, edge effects due to finitelength t ..."
Abstract

Cited by 225 (2 self)
 Add to MetaCart
A practical stepbystep guide to wavelet analysis is given, with examples taken from time series of the El Nio Southern Oscillation (ENSO). The guide includes a comparison to the windowed Fourier transform, the choice of an appropriate wavelet basis function, edge effects due to finitelength time series, and the relationship between wavelet scale and Fourier frequency. New statistical significance tests for wavelet power spectra are developed by deriving theoretical wavelet spectra for white and red noise processes and using these to establish significance levels and confidence intervals. It is shown that smoothing in time or scale can be used to increase the confidence of the wavelet spectrum. Empirical formulas are given for the effect of smoothing on significance levels and confidence intervals. Extensions to wavelet analysis such as filtering, the power Hovmller, crosswavelet spectra, and coherence are described. The statistical significance tests are used to give a qu...
Wavelet Thresholding via a Bayesian Approach
 J. R. STATIST. SOC. B
, 1996
"... We discuss a Bayesian formalism which gives rise to a type of wavelet threshold estimation in nonparametric regression. A prior distribution is imposed on the wavelet coefficients of the unknown response function, designed to capture the sparseness of wavelet expansion common to most applications. ..."
Abstract

Cited by 204 (27 self)
 Add to MetaCart
We discuss a Bayesian formalism which gives rise to a type of wavelet threshold estimation in nonparametric regression. A prior distribution is imposed on the wavelet coefficients of the unknown response function, designed to capture the sparseness of wavelet expansion common to most applications. For the prior specified, the posterior median yields a thresholding procedure. Our prior model for the underlying function can be adjusted to give functions falling in any specific Besov space. We establish a relation between the hyperparameters of the prior model and the parameters of those Besov spaces within which realizations from the prior will fall. Such a relation gives insight into the meaning of the Besov space parameters. Moreover, the established relation makes it possible in principle to incorporate prior knowledge about the function's regularity properties into the prior model for its wavelet coefficients. However, prior knowledge about a function's regularity properties might b...
From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
, 2007
"... A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combinato ..."
Abstract

Cited by 202 (31 self)
 Add to MetaCart
A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combinatorial in nature, are there efficient methods for finding the sparsest solution? These questions have been answered positively and constructively in recent years, exposing a wide variety of surprising phenomena; in particular, the existence of easilyverifiable conditions under which optimallysparse solutions can be found by concrete, effective computational methods. Such theoretical results inspire a bold perspective on some important practical problems in signal and image processing. Several wellknown signal and image processing problems can be cast as demanding solutions of undetermined systems of equations. Such problems have previously seemed, to many, intractable. There is considerable evidence that these problems often have sparse solutions. Hence, advances in finding sparse solutions to underdetermined systems energizes research on such signal and image processing problems – to striking effect. In this paper we review the theoretical results on sparse solutions of linear systems, empirical
Regularization paths for generalized linear models via coordinate descent
, 2009
"... We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, twoclass logistic regression, and multinomial regression problems while the penalties include ℓ1 (the lasso), ℓ2 (ridge regression) and mixtures of the two (the elastic ..."
Abstract

Cited by 192 (6 self)
 Add to MetaCart
We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, twoclass logistic regression, and multinomial regression problems while the penalties include ℓ1 (the lasso), ℓ2 (ridge regression) and mixtures of the two (the elastic net). The algorithms use cyclical coordinate descent, computed along a regularization path. The methods can handle large problems and can also deal efficiently with sparse features. In comparative timings we find that the new algorithms are considerably faster than competing methods.
LowComplexity Image Denoising Based on Statistical Modeling of Wavelet Coefficients
, 1999
"... We introduce a simple spatially adaptive statistical model for wavelet image coe#cients and apply it to image denoising. Our model is inspired by a recent wavelet image compression algorithm, the Estimation Quantization coder. We model wavelet image coefficients as zeromean Gaussian random varia ..."
Abstract

Cited by 150 (13 self)
 Add to MetaCart
We introduce a simple spatially adaptive statistical model for wavelet image coe#cients and apply it to image denoising. Our model is inspired by a recent wavelet image compression algorithm, the Estimation Quantization coder. We model wavelet image coefficients as zeromean Gaussian random variables with high local correlation. We assume a marginal prior distribution on wavelet coefficients variances and estimate them using an approximate Maximum A Posteriori Probability rule. Then we apply an approximate Minimum Mean Squared Error estimation procedure to restore the noisy wavelet image coefficients. Despite the simplicity of our method, both in its concept and implementation, our denoising results are among the best reported in the literature.
Bivariate Shrinkage Functions for WaveletBased Denoising Exploiting Interscale Dependency
, 2002
"... Most simple nonlinear thresholding rules for waveletbased denoising assume that the wavelet coefficients are independent. However, wavelet coefficients of natural images have significant dependencies. In this paper, we will only consider the dependencies between the coefficients and their parents i ..."
Abstract

Cited by 135 (4 self)
 Add to MetaCart
Most simple nonlinear thresholding rules for waveletbased denoising assume that the wavelet coefficients are independent. However, wavelet coefficients of natural images have significant dependencies. In this paper, we will only consider the dependencies between the coefficients and their parents in detail. For this purpose, new nonGaussian bivariate distributions are proposed, and corresponding nonlinear threshold functions (shrinkage functions) are derived from the models using Bayesian estimation theory. The new shrinkage functions do not assume the independence of wavelet coefficients. We will show three image denoising examples in order to show the performance of these new bivariate shrinkage rules. In the second example, a simple subbanddependent datadriven image denoising system is described and compared with effective datadriven techniques in the literature, namely VisuShrink, SureShrink, BayesShrink, and hidden Markov models. In the third example, the same idea is applied to the dualtree complex wavelet coefficients.
Multiple Shrinkage and Subset Selection in Wavelets
, 1997
"... This paper discusses Bayesian methods for multiple shrinkage estimation in wavelets. Wavelets are used in applications for data denoising, via shrinkage of the coefficients towards zero, and for data compression, by shrinkage and setting small coefficients to zero. We approach wavelet shrinkage by u ..."
Abstract

Cited by 118 (16 self)
 Add to MetaCart
This paper discusses Bayesian methods for multiple shrinkage estimation in wavelets. Wavelets are used in applications for data denoising, via shrinkage of the coefficients towards zero, and for data compression, by shrinkage and setting small coefficients to zero. We approach wavelet shrinkage by using Bayesian hierarchical models, assigning a positive prior probability to the wavelet coefficients being zero. The resulting estimator for the wavelet coefficients is a multiple shrinkage estimator that exhibits a wide variety of nonlinear shrinkage patterns. We discuss fast computational implementations, with a focus on easytocompute analytic approximations as well as importance sampling and Markov chain Monte Carlo methods. Multiple shrinkage estimators prove to have excellent mean squared error performance in reconstructing standard test functions. We demonstrate this in simulated test examples, comparing various implementations of multiple shrinkage to commonly used shrinkage rules. Finally, we illustrate our approach with an application to the socalled "glint" data.
Nonlinear Wavelet Shrinkage With Bayes Rules and Bayes Factors
 Journal of the American Statistical Association
, 1998
"... this article a wavelet shrinkage by coherent ..."