Results 1  10
of
422
Determining Lyapunov Exponents from a Time Series
 Physica
, 1985
"... We present the first algorithms that allow the estimation of nonnegative Lyapunov exponents from an experimental time series. Lyapunov exponents, which provide a qualitative and quantitative characterization of dynamical behavior, are related to the exponentially fast divergence or convergence of n ..."
Abstract

Cited by 231 (1 self)
 Add to MetaCart
We present the first algorithms that allow the estimation of nonnegative Lyapunov exponents from an experimental time series. Lyapunov exponents, which provide a qualitative and quantitative characterization of dynamical behavior, are related to the exponentially fast divergence or convergence of nearby orbits in phase space. A system with one or more positive Lyapunov exponents is defined to be chaotic. Our method is rooted conceptually in a previously developed technique that could only be applied to analytically defined model systems: we monitor the longterm growth rate of small volume elements in an attractor. The method is tested on model systems with known Lyapunov spectra, and applied to data for the BelousovZhabotinskii reaction and CouetteTaylor flow. Contents 1.
Chaos and Nonlinear Dynamics: Application to Financial Markets
 Journal of Finance
, 1991
"... After the stock market crash of October 19, 1987, interest in nonlinear dynamics, especially deterministic chaotic dynamics, has increased in both the financial press and the academic literature. This has come about because the frequency of large moves in stock markets is greater than would be expec ..."
Abstract

Cited by 106 (3 self)
 Add to MetaCart
After the stock market crash of October 19, 1987, interest in nonlinear dynamics, especially deterministic chaotic dynamics, has increased in both the financial press and the academic literature. This has come about because the frequency of large moves in stock markets is greater than would be expected
An Unsupervised Ensemble Learning Method for Nonlinear Dynamic StateSpace Models
 Neural Computation
, 2001
"... A Bayesian ensemble learning method is introduced for unsupervised extraction of dynamic processes from noisy data. The data are assumed to be generated by an unknown nonlinear mapping from unknown factors. The dynamics of the factors are modeled using a nonlinear statespace model. The nonlinear map ..."
Abstract

Cited by 87 (32 self)
 Add to MetaCart
A Bayesian ensemble learning method is introduced for unsupervised extraction of dynamic processes from noisy data. The data are assumed to be generated by an unknown nonlinear mapping from unknown factors. The dynamics of the factors are modeled using a nonlinear statespace model. The nonlinear mappings in the model are represented using multilayer perceptron networks. The proposed method is computationally demanding, but it allows the use of higher dimensional nonlinear latent variable models than other existing approaches. Experiments with chaotic data show that the new method is able to blindly estimate the factors and the dynamic process which have generated the data. It clearly outperforms currently available nonlinear prediction techniques in this very di#cult test problem.
Annealed Competition of Experts for a Segmentation and Classification of Switching Dynamics
, 1996
"... We present a method for the unsupervised segmentation of data streams originating from different unknown sources which alternate in time. We use an architecture consisting of competing neural networks. Memory is included in order to resolve ambiguities of inputoutput relations. In order to obtain m ..."
Abstract

Cited by 66 (21 self)
 Add to MetaCart
We present a method for the unsupervised segmentation of data streams originating from different unknown sources which alternate in time. We use an architecture consisting of competing neural networks. Memory is included in order to resolve ambiguities of inputoutput relations. In order to obtain maximal specialization, the competition is adiabatically increased during training. Our method achieves almost perfect identification and segmentation in the case of switching chaotic dynamics where input manifolds overlap and inputoutput relations are ambiguous. Only a small dataset is needed for the training proceedure. Applications to time series from complex systems demonstrate the potential relevance of our approach for time series analysis and shortterm prediction. 1 Introduction Neural networks provide frameworks for the representation of relations present in data. Especially in the fields of classification and time series prediction, neural networks Corresponding author, email:k...
A practical method for calculating largest Lyapunov exponents from small data sets
 PHYSICA D
, 1993
"... Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the largest Lyapunov exponent. Lyapunov exponents quantify the exponential divergence of initially close statespace trajectories and estimate the amount of chaos in a system. We present a new m ..."
Abstract

Cited by 62 (0 self)
 Add to MetaCart
Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the largest Lyapunov exponent. Lyapunov exponents quantify the exponential divergence of initially close statespace trajectories and estimate the amount of chaos in a system. We present a new method for calculating the largest Lyapunov exponent from an experimental time series. The method follows directly from the definition of the largest Lyapunov exponent and is accurate because it takes advantage of all the available data. We show that the algorithm is fast, easy to implement, and robust to changes in the following quantities: embedding dimension, size of data set, reconstruction delay, and noise level. Furthermore, one may use the algorithm to calculate simultaneously the correlation dimension. Thus, one sequence of computations will yield an estimate of both the level of chaos and the system complexity.
An observer looks at synchronization
 IEEE Trans. Circuits Syst
, 1997
"... Abstract—In the literature on dynamical systems analysis and the control of systems with complex behavior, the topic of synchronization of the response of systems has received considerable attention. This concept is revisited in the light of the classical notion of observers from (non)linear control ..."
Abstract

Cited by 52 (5 self)
 Add to MetaCart
Abstract—In the literature on dynamical systems analysis and the control of systems with complex behavior, the topic of synchronization of the response of systems has received considerable attention. This concept is revisited in the light of the classical notion of observers from (non)linear control theory. Index Terms—Detectability, dynamical systems, observers, reduced order observers, synchronization. I.
Noisy Time Series Prediction using a Recurrent Neural Network and Grammatical Inference
 Machine Learning
, 2001
"... Financial forecasting is an example of a signal processing problem which is challenging due to small sample sizes, high noise, nonstationarity, and nonlinearity. Neural networks have been very successful in a number of signal processing applications. We discuss fundamental limitations and inherent ..."
Abstract

Cited by 47 (0 self)
 Add to MetaCart
Financial forecasting is an example of a signal processing problem which is challenging due to small sample sizes, high noise, nonstationarity, and nonlinearity. Neural networks have been very successful in a number of signal processing applications. We discuss fundamental limitations and inherent difficulties when using neural networks for the processing of high noise, small sample size signals. We introduce a new intelligent signal processing method which addresses the difficulties. The method proposed uses conversion into a symbolic representation with a selforganizing map, and grammatical inference with recurrent neural networks. We apply the method to the prediction of daily foreign exchange rates, addressing difficulties with nonstationarity, overfitting, and unequal a priori class probabilities, and we find significant predictability in comprehensive experiments covering 5 different foreign exchange rates. The method correctly predicts the direction of change for th...
Extracting and Representing Qualitative Behaviors of Complex Systems in Phase Spaces
, 1991
"... This paper describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology. Support for the Laboratory's artificial intelligence research is provided in part by the Advanced Research Projects Agency of the Department of Defense under Office of Naval Res ..."
Abstract

Cited by 45 (16 self)
 Add to MetaCart
This paper describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology. Support for the Laboratory's artificial intelligence research is provided in part by the Advanced Research Projects Agency of the Department of Defense under Office of Naval Research contract N0001489 J3202, and in part by the National Science Foundation grant MIP9001651. The author is also supported by a G.Y. Chu Fellowship
Interdisciplinary application of nonlinear time series methods
 Phys. Reports
, 1998
"... This paper reports on the application to field measurements of time series methods developed on the basis of the theory of deterministic chaos. The major difficulties are pointed out that arise when the data cannot be assumed to be purely deterministic and the potential that remains in this situatio ..."
Abstract

Cited by 42 (5 self)
 Add to MetaCart
This paper reports on the application to field measurements of time series methods developed on the basis of the theory of deterministic chaos. The major difficulties are pointed out that arise when the data cannot be assumed to be purely deterministic and the potential that remains in this situation is discussed. For signals with weakly nonlinear structure, the presence of nonlinearity in a general sense has to be inferred statistically. The paper reviews the relevant methods and discusses the implications for deterministic modeling. Most field measurements yield nonstationary time series, which poses a severe problem for their analysis. Recent progress in the detection and understanding of nonstationarity is reported. If a clear signature of approximate determinism is found, the notions of phase space, attractors, invariant manifolds etc. provide a convenient framework for time series analysis. Although the results have to be interpreted with great care, superior performance can be achieved for typical signal processing tasks. In particular, prediction and filtering of signals are discussed, as well as the classification of system states by means of time series recordings.
Nonlinear Multivariate Analysis of Neurophysiological Signals
 Progress in Neurobiology
, 2005
"... Multivariate time series analysis is extensively used in neurophysiology with the aim of studying the relationship between simultaneously recorded signals. Recently, advances on information theory and nonlinear dynamical systems theory have allowed the study of various types of synchronization from ..."
Abstract

Cited by 40 (1 self)
 Add to MetaCart
Multivariate time series analysis is extensively used in neurophysiology with the aim of studying the relationship between simultaneously recorded signals. Recently, advances on information theory and nonlinear dynamical systems theory have allowed the study of various types of synchronization from time series. In this work, we first describe the multivariate linear methods most commonly used in neurophysiology and show that they can be extended to assess the existence of nonlinear interdependences between signals. We then review the concepts of entropy and mutual information followed by a detailed description of nonlinear methods based on the concepts of phase synchronization, generalized synchronization and event synchronization. In all cases, we show how to apply these methods to study different kinds of neurophysiological data. Finally, we illustrate the use of multivariate surrogate data test for the assessment of the strength (strong or weak) and the type (linear or nonlinear) of interdependence between neurophysiological signals.