Results 1 
4 of
4
Bialgebraic Methods and Modal Logic in Structural Operational Semantics
 Electronic Notes in Theoretical Computer Science
, 2007
"... Bialgebraic semantics, invented a decade ago by Turi and Plotkin, is an approach to formal reasoning about wellbehaved structural operational semantics (SOS). An extension of algebraic and coalgebraic methods, it abstracts from concrete notions of syntax and system behaviour, thus treating various ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
Bialgebraic semantics, invented a decade ago by Turi and Plotkin, is an approach to formal reasoning about wellbehaved structural operational semantics (SOS). An extension of algebraic and coalgebraic methods, it abstracts from concrete notions of syntax and system behaviour, thus treating various kinds of operational descriptions in a uniform fashion. In this paper, bialgebraic semantics is combined with a coalgebraic approach to modal logic in a novel, general approach to proving the compositionality of process equivalences for languages defined by structural operational semantics. To prove compositionality, one provides a notion of behaviour for logical formulas, and defines an SOSlike specification of modal operators which reflects the original SOS specification of the language. This approach can be used to define SOS congruence formats as well as to prove compositionality for specific languages and equivalences. Key words: structural operational semantics, coalgebra, bialgebra, modal logic, congruence format 1
Bialgebraic methods in structural operational semantics
 ENTCS
, 2007
"... Bialgebraic semantics, invented a decade ago by Turi and Plotkin, is an approach to formal reasoning about wellbehaved structural operational specifications. An extension of algebraic and coalgebraic methods, it abstracts from concrete notions of syntax and system behaviour, thus treating various k ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
Bialgebraic semantics, invented a decade ago by Turi and Plotkin, is an approach to formal reasoning about wellbehaved structural operational specifications. An extension of algebraic and coalgebraic methods, it abstracts from concrete notions of syntax and system behaviour, thus treating various kinds of operational descriptions in a uniform fashion. In this talk, the current state of the art in the area of bialgebraic semantics is presented, and its prospects for the future are sketched. In particular, a combination of basic bialgebraic techniques with a categorical approach to modal logic is described, as an abstract approach to proving compositionality by decomposing modal logics over structural operational specifications. Keywords:
Structural Operational Semantics and Modal Logic, Revisited
"... A previously introduced combination of the bialgebraic approach to structural operational semantics with coalgebraic modal logic is reexamined and improved in some aspects. Firstly, a more abstract, conceptual proof of the main compositionality theorem is given, based on an understanding of modal l ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
A previously introduced combination of the bialgebraic approach to structural operational semantics with coalgebraic modal logic is reexamined and improved in some aspects. Firstly, a more abstract, conceptual proof of the main compositionality theorem is given, based on an understanding of modal logic as a study of coalgebras in slice categories of adjunctions. Secondly, a more concrete understanding of the assumptions of the theorem is provided, where proving compositionality amounts to finding a syntactic distributive law between two collections of predicate liftings. Keywords: structural operational semantics, modal logic, coalgebra 1
Bialgebraic Operational Semantics and Modal Logic (extended abstract)
"... A novel, general approach is proposed to proving the compositionality of process equivalences on languages defined by Structural Operational Semantics (SOS). The approach, based on modal logic, is inspired by the simple observation that if the set of formulas satisfied by a process can be derived fr ..."
Abstract
 Add to MetaCart
A novel, general approach is proposed to proving the compositionality of process equivalences on languages defined by Structural Operational Semantics (SOS). The approach, based on modal logic, is inspired by the simple observation that if the set of formulas satisfied by a process can be derived from the corresponding sets for its subprocesses, then the logical equivalence is a congruence. Striving for generality, SOS rules are modeled categorically as bialgebraic distributive laws for some notions of process syntax and behaviour, and modal logics are modeled via coalgebraic polyadic modal logic. Compositionality is proved by providing a suitable notion of behaviour for the logic together with a dual distributive law, reflecting the one modeling the SOS specification. Concretely, the dual laws may appear as SOSlike rules where logical formulas play the role of processes, and their behaviour models logical decomposition over process syntax. The approach can be used either to proving compositionality for specific languages or for defining SOS congruence formats.