Results 1 
2 of
2
OrderEnrichment for Categories of Partial Maps
, 1993
"... Introduction In (Plotkin 1985) a revitalised approach to domain theory was initiated. Roughly, the idea was to eliminate the bottom from the domains and to keep the functions partially defined. Thus replacing Cppo (the category of small cppos posets with a least element and closed under lubs of ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
Introduction In (Plotkin 1985) a revitalised approach to domain theory was initiated. Roughly, the idea was to eliminate the bottom from the domains and to keep the functions partially defined. Thus replacing Cppo (the category of small cppos posets with a least element and closed under lubs of !chains and continuous functions) with pCpo (the category of small cpos posets closed under lubs of !chains and partial continuous functions  see Subsection 3.1). One important point in the reformulation is the recognition of pCpo Research partially supported by Fundaci'on Antorchas and The British Council grant ARG 2281/14/6, and SERC grant RR30735. as a category of partial maps as, for example, such presentation fits better with standard formulations of recursion theory and it allows a categorical description of data types (via partial cartesian closed categories (Longo and Moggi 1984) with finite coproducts) in the presence of fixedpoint operators. Following the main moti
ReInterpreting the Modal µCalculus
 MODAL LOGIC AND PROCESS ALGEBRA
, 1995
"... We reexamine the modal µcalculus in the light of some classical theory of Boolean algebras and recent results on duality theory for a modal logic with fixed points. We propose interpreting formulas into a field of subsets of states instead of the full power set lattice used by Kozen. Under this in ..."
Abstract
 Add to MetaCart
We reexamine the modal µcalculus in the light of some classical theory of Boolean algebras and recent results on duality theory for a modal logic with fixed points. We propose interpreting formulas into a field of subsets of states instead of the full power set lattice used by Kozen. Under this interpretation we relate image compact modal frames with Scott continuity of the box modality, msaturated transition systems and descriptive modal frames. Also, it is shown that the class of image compact modal frames satisfies the HennessyMilner property. We conclude by showing that for descriptive modal µframes the standard interpretation coincides with the one we proposed.