Results 1 
5 of
5
Equilogical Spaces
, 1998
"... It is well known that one can build models of full higherorder dependent type theory (also called the calculus of constructions) using partial equivalence relations (PERs) and assemblies over a partial combinatory algebra (PCA). But the idea of categories of PERs and ERs (total equivalence relation ..."
Abstract

Cited by 31 (12 self)
 Add to MetaCart
It is well known that one can build models of full higherorder dependent type theory (also called the calculus of constructions) using partial equivalence relations (PERs) and assemblies over a partial combinatory algebra (PCA). But the idea of categories of PERs and ERs (total equivalence relations) can be applied to other structures as well. In particular, we can easily dene the category of ERs and equivalencepreserving continuous mappings over the standard category Top 0 of topological T 0 spaces; we call these spaces (a topological space together with an ER) equilogical spaces and the resulting category Equ. We show that this categoryin contradistinction to Top 0 is a cartesian closed category. The direct proof outlined here uses the equivalence of the category Equ to the category PEqu of PERs over algebraic lattices (a full subcategory of Top 0 that is well known to be cartesian closed from domain theory). In another paper with Carboni and Rosolini (cited herein) a more abstract categorical generalization shows why many such categories are cartesian closed. The category Equ obviously contains Top 0 as a full subcategory, and it naturally contains many other well known subcategories. In particular, we show why, as a consequence of work of Ershov, Berger, and others, the KleeneKreisel hierarchy of countable functionals of nite types can be naturally constructed in Equ from the natural numbers object N by repeated use in Equ of exponentiation and binary products. We also develop for Equ notions of modest sets (a category equivalent to Equ) and assemblies to explain why a model of dependent type theory is obtained. We make some comparisons of this model to other, known models. 1
Topological and Limitspace subcategories of Countablybased Equilogical Spaces
, 2001
"... this paper we show that the two approaches are equivalent for a ..."
Abstract

Cited by 22 (4 self)
 Add to MetaCart
this paper we show that the two approaches are equivalent for a
A Relationship between Equilogical Spaces and Type Two Effectivity
"... In this paper I compare two well studied approaches to topological semantics the domaintheoretic approach, exemplied by the category of countably based equilogical spaces, Equ, and Type Two Eectivity, exemplied by the category of Baire space representations, Rep(B ). These two categories are both ..."
Abstract

Cited by 16 (0 self)
 Add to MetaCart
In this paper I compare two well studied approaches to topological semantics the domaintheoretic approach, exemplied by the category of countably based equilogical spaces, Equ, and Type Two Eectivity, exemplied by the category of Baire space representations, Rep(B ). These two categories are both locally cartesian closed extensions of countably based T 0 spaces. A natural question to ask is how they are related.
Notions of computability at higher types I
 In Logic Colloquium 2000
, 2005
"... We discuss the conceptual problem of identifying the natural notions of computability at higher types (over the natural numbers). We argue for an eclectic approach, in which one considers a wide range of possible approaches to defining higher type computability and then looks for regularities. As a ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
We discuss the conceptual problem of identifying the natural notions of computability at higher types (over the natural numbers). We argue for an eclectic approach, in which one considers a wide range of possible approaches to defining higher type computability and then looks for regularities. As a first step in this programme, we give an extended survey of the di#erent strands of research on higher type computability to date, bringing together material from recursion theory, constructive logic and computer science. The paper thus serves as a reasonably complete overview of the literature on higher type computability. Two sequel papers will be devoted to developing a more systematic account of the material reviewed here.
Two constructive embeddingextension theorems with applications to continuity principles and to BanachMazur computability
 Mathematical Logic Quarterly
"... We prove two embedding and extension theorems in the context of the constructive theory of metric spaces. The first states that Cantor space embeds in any inhabited complete separable metric space (CSM) without isolated points, X, in such a way that every sequentially continuous function from Cantor ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
We prove two embedding and extension theorems in the context of the constructive theory of metric spaces. The first states that Cantor space embeds in any inhabited complete separable metric space (CSM) without isolated points, X, in such a way that every sequentially continuous function from Cantor space to Z extends to a sequentially continuous function from X to R. The second asserts an analogous property for Baire space relative to any inhabited locally noncompact CSM. Both results rely on having careful constructive formulations of the concepts involved. As a first application, we derive new relationships between “continuity principles ” asserting that all functions between specified metric spaces are pointwise continuous. In particular, we give conditions that imply the failure of the continuity principle “all functions from X to R are continuous”, when X is an inhabited CSM without isolated points, and when X is an inhabited locally noncompact CSM. One situation in which the latter case applies is in models based on “domain realizability”, in which the failure of the continuity principle for any inhabited locally noncompact CSM, X, generalizes a result previously obtained by Escardó and Streicher in the special case X = C[0, 1]. As a second application, we show that, when the notion of inhabited complete separable metric space without isolated points is interpreted in a recursiontheoretic setting, then, for any such space X, there exists a BanachMazur computable function from X to the computable real numbers that is not Markov computable. This generalizes a result obtained by Hertling in the special case that X is the space of computable real numbers.