Results 1  10
of
50
Learning Bayesian belief networks: An approach based on the MDL principle
 Computational Intelligence
, 1994
"... A new approach for learning Bayesian belief networks from raw data is presented. The approach is based on Rissanen's Minimal Description Length (MDL) principle, which is particularly well suited for this task. Our approach does not require any prior assumptions about the distribution being lear ..."
Abstract

Cited by 199 (8 self)
 Add to MetaCart
(Show Context)
A new approach for learning Bayesian belief networks from raw data is presented. The approach is based on Rissanen's Minimal Description Length (MDL) principle, which is particularly well suited for this task. Our approach does not require any prior assumptions about the distribution being learned. In particular, our method can learn unrestricted multiplyconnected belief networks. Furthermore, unlike other approaches our method allows us to tradeo accuracy and complexity in the learned model. This is important since if the learned model is very complex (highly connected) it can be conceptually and computationally intractable. In such a case it would be preferable to use a simpler model even if it is less accurate. The MDL principle o ers a reasoned method for making this tradeo. We also show that our method generalizes previous approaches based on Kullback crossentropy. Experiments have been conducted to demonstrate the feasibility of the approach. Keywords: Knowledge Acquisition � Bayes Nets � Uncertainty Reasoning. 1
Learning Bayesian Networks from Data: An InformationTheory Based Approach
, 2001
"... This paper provides algorithms that use an informationtheoretic analysis to learn Bayesian network structures from data. Based on our threephase learning framework, we develop efficient algorithms that can effectively learn Bayesian networks, requiring only polynomial numbers of conditional indepe ..."
Abstract

Cited by 101 (4 self)
 Add to MetaCart
This paper provides algorithms that use an informationtheoretic analysis to learn Bayesian network structures from data. Based on our threephase learning framework, we develop efficient algorithms that can effectively learn Bayesian networks, requiring only polynomial numbers of conditional independence (CI) tests in typical cases. We provide precise conditions that specify when these algorithms are guaranteed to be correct as well as empirical evidence (from real world applications and simulation tests) that demonstrates that these systems work efficiently and reliably in practice.
Learning Bayesian Networks by Genetic Algorithms. A case study in the prediction of survival in malignant skin melanoma
, 1997
"... In this work we introduce a methodology based on Genetic Algorithms for the automatic induction of Bayesian Networks from a file containing cases and variables related to the problem. The methodology is applied to the problem of predicting survival of people after one, three and five years of being ..."
Abstract

Cited by 79 (11 self)
 Add to MetaCart
In this work we introduce a methodology based on Genetic Algorithms for the automatic induction of Bayesian Networks from a file containing cases and variables related to the problem. The methodology is applied to the problem of predicting survival of people after one, three and five years of being diagnosed as having malignant skin melanoma. The accuracy of the obtained model, measured in terms of the percentage of wellclassified subjects, is compared to that obtained by the called NaiveBayes. In both cases, the estimation of the model accuracy is obtained from the 10fold crossvalidation method. 1. Introduction Expert systems, one of the most developed areas in the field of Artificial Intelligence, are computer programs designed to help or replace humans beings in tasks in which the human experience and human knowledge are scarce and unreliable. Although, there are domains in which the tasks can be specifed by logic rules, other domains are characterized by an uncertainty inherent...
Learning Bayesian Network Structures by Searching For the Best Ordering With Genetic Algorithms
 IEEE Transactions on Systems, Man and Cybernetics
, 1996
"... In this paper we present a ne_(l n [!ii ' with respect to Bayesian networks con ogy for inducing Bayesian network structures frop3 titute the roblem of the evidence propagation and a database of cases. The methodology is based oap&lll searching for the best ordering of the system vari th ..."
Abstract

Cited by 58 (9 self)
 Add to MetaCart
In this paper we present a ne_(l n [!ii ' with respect to Bayesian networks con ogy for inducing Bayesian network structures frop3 titute the roblem of the evidence propagation and a database of cases. The methodology is based oap&lll searching for the best ordering of the system vari the problem of the model search. The problem of shies by means of genetic algorithl{. Since his th_vidence propagation consists of once the vMproblem of finding an optimal ordea. teeuarue}rables are known, the assignment of resembles the traveling salesman p'FolUleh)ve use .... IW. ....... probablhles to the values of the rest of the van genetic operators that were developed for the latter  problem. The quality of a variable ordering is eval ables. Cooper [4] demonstrated that this problem Mated with the algorithm K2. We present empirical results that were obtained with a simulation of the ALARM network.
Learning Bayesian Belief Networks Based on the Minimum Description Length Principle: Basic Properties
, 1996
"... This paper was partially presented at the 9th conference on Uncertainty in Artificial Intelligence, July 1993. ..."
Abstract

Cited by 52 (0 self)
 Add to MetaCart
This paper was partially presented at the 9th conference on Uncertainty in Artificial Intelligence, July 1993.
Constructor: A system for the induction of probabilistic models
 In Proc. of AAAI
, 1990
"... The probabilistic network technology is a knowledgebased technique which focuses on reasoning under uncertainty. Because of its well defined semantics and solid theoretical foundations, the technology is finding increasing application in fields such as medical diagnosis, machine vision, military sit ..."
Abstract

Cited by 40 (0 self)
 Add to MetaCart
(Show Context)
The probabilistic network technology is a knowledgebased technique which focuses on reasoning under uncertainty. Because of its well defined semantics and solid theoretical foundations, the technology is finding increasing application in fields such as medical diagnosis, machine vision, military situation assessment, petroleum exploration, and information retrieval. However, like other knowledgebased techniques, acquiring the qualitative and quantitative information needed to build these networks can be highly laborintensive. CONSTRUCTQR integrates techniques and concepts from probabilistic networks, artificial intelligence, and statistics in order to induce Markov networks (i.e., undirected probabilistic networks). The resulting networks are useful both qualitatively for concept organization and quantitatively for the assessment of new data. The primary goal of CONSTRUCTOR is to find qualitative structure from data. CONSTRUCTOR finds structure by first, modeling each feature in a data set as a node in a Markov network and secondly, by finding the neighbors of each node in the network. In Markov networks, the neighbors of a node have the property of being the smallest set of nodes which “shield ” the node from being affected by other nodes in the graph. This property is used in a heuristic search to identify each node’s neighbors. The traditional x2 test for independence is used to test if a set of nodes “shield ” another node. Crossvalidation is used to estimate the quality of alternative structures.
Using Causal Information and Local Measures to Learn Bayesian Networks
, 1993
"... In previous work we developed a method of learning Bayesian Network models from raw data. This method relies on the well known minimal description length (MDL) principle. The MDL principle is particularly well suited to this task as it allows us to tradeoff, in a principled way, the accuracy of the ..."
Abstract

Cited by 35 (2 self)
 Add to MetaCart
In previous work we developed a method of learning Bayesian Network models from raw data. This method relies on the well known minimal description length (MDL) principle. The MDL principle is particularly well suited to this task as it allows us to tradeoff, in a principled way, the accuracy of the learned network against its practical usefulness. In this paper we present some new results that have arisen from our work. In particular, we present a new local way of computing the description length. This allows us to make significant improvements in our search algorithm. In addition, we modify our algorithm so that it can take into account partial domain information that might be provided by a domain expert. The local computation of description length also opens the door for local refinement of an existent network. The feasibility of our approach is demonstrated by experiments involving networks of a practical size.
Probabilistic Network Construction Using the Minimum Description Length Principle
, 1994
"... Probabilistic networks can be constructed from a database of cases by selecting a network that has highest quality with respect to this database according to a given measure. A new measure is presented for this purpose based on a minimum description length (MDL) approach. This measure is compared wi ..."
Abstract

Cited by 30 (1 self)
 Add to MetaCart
(Show Context)
Probabilistic networks can be constructed from a database of cases by selecting a network that has highest quality with respect to this database according to a given measure. A new measure is presented for this purpose based on a minimum description length (MDL) approach. This measure is compared with a commonly used measure based on a Bayesian approach both from a theoretical and an experimental point of view. We show that the two measures have the same properties for infinite large databases. For smaller databases, however, the MDL measure assigns equal quality to networks that represent the same set of independencies while the Bayesian measure does not. Preliminary test results suggest that an algorithm for learning probabilistic networks using the minimum description length approach performs comparably to a learning algorithm using the Bayesian approach. However, the former is slightly faster.
Independency relationships and learning algorithms for singly connected networks
, 1998
"... Graphical structures such as Bayesian networks or M arkov networks are very useful tools for representing irrelevance or independency relationships, and they may be used to efficiently perform reasoning tasks. Singly connected networks are important specific cases where there is no more than one un ..."
Abstract

Cited by 19 (10 self)
 Add to MetaCart
Graphical structures such as Bayesian networks or M arkov networks are very useful tools for representing irrelevance or independency relationships, and they may be used to efficiently perform reasoning tasks. Singly connected networks are important specific cases where there is no more than one undirected path connecting each pair of variables. The aim of this paper is to investigate the kind of properties that a dependency model must verify in order to be equivalent to a singly connected graph structure, as a way of driving automated discovery and construction of singly connected networks in data. The main results are the characterizations of those dependency models which are isomorphic to singly connected graphs (either via the dseparation criterion for directed acyclic graphs or via the separation criterion for undirected graphs), as well as the development of efficient algorithms for learning singly connected graph representations of dependency models.
Learning Causal Networks from Data: A survey and a new algorithm for recovering possibilistic causal networks
, 1997
"... Introduction Reasoning in terms of cause and effect is a strategy that arises in many tasks. For example, diagnosis is usually defined as the task of finding the causes (illnesses) from the observed effects (symptoms). Similarly, prediction can be understood as the description of a future plausible ..."
Abstract

Cited by 19 (5 self)
 Add to MetaCart
Introduction Reasoning in terms of cause and effect is a strategy that arises in many tasks. For example, diagnosis is usually defined as the task of finding the causes (illnesses) from the observed effects (symptoms). Similarly, prediction can be understood as the description of a future plausible situation where observed effects will be in accordance with the known causal structure of the phenomenon being studied. Causal models are a summary of the knowledge about a phenomenon expressed in terms of causation. Many areas of the ap # This work has been partially supported by the Spanish Comission Interministerial de Ciencia y Tecnologia Project CICYTTIC96 0878. plied sciences (econometry, biomedics, engineering, etc.) have used such a term to refer to models that yield explanations, allow for prediction and facilitate planning and decision making. Causal reasoning can be viewed as inference guided by a causation theory. That kind of inference can be further specialised into induc