Results 1 
2 of
2
Optimal Coding and Sampling of Triangulations
, 2003
"... Abstract. We present a simple encoding of plane triangulations (aka. maximal planar graphs) by plane trees with two leaves per inner node. Our encoding is a bijection taking advantage of the minimal Schnyder tree decomposition of a plane triangulation. Coding and decoding take linear time. As a bypr ..."
Abstract

Cited by 39 (5 self)
 Add to MetaCart
Abstract. We present a simple encoding of plane triangulations (aka. maximal planar graphs) by plane trees with two leaves per inner node. Our encoding is a bijection taking advantage of the minimal Schnyder tree decomposition of a plane triangulation. Coding and decoding take linear time. As a byproduct we derive: (i) a simple interpretation of the formula for the number of plane triangulations with n vertices, (ii) a linear random sampling algorithm, (iii) an explicit and simple information theory optimal encoding. 1
On the asymptotic number of plane curves and alternating knots, Experiment
 Math
"... Abstract. We present a conjecture for the powerlaw exponent in the asymptotic number of types of plane curves as the number of selfintersections goes to infinity. In view of the description of prime alternating links as flype equivalence classes of plane curves, a similar conjecture is made for th ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Abstract. We present a conjecture for the powerlaw exponent in the asymptotic number of types of plane curves as the number of selfintersections goes to infinity. In view of the description of prime alternating links as flype equivalence classes of plane curves, a similar conjecture is made for the asymptotic number of prime alternating knots. The rationale leading to these conjectures is given by quantum field theory. Plane curves are viewed as configurations of loops on a random planar lattices, that are in turn interpreted as a model of 2d quantum gravity with matter. The identification of the universality class of this model yields the conjecture. Since approximate counting or sampling planar curves with more than a few dozens of intersections is an open problem, direct confrontation with numerical data yields no convincing indication on the correctness of our conjectures. However, our physical approach yields a more general conjecture about connected systems of curves. We take advantage of this to design an original and feasible numerical test, based on recent perfect samplers for large planar maps.