Results 1  10
of
20
The next stage: quantum game theory
 Nova Science Publishers
"... Recent development in quantum computation and quantum information theory allows to extend the scope of game theory for the quantum world. The paper presents the history, basic ideas and recent development in quantum game theory. On grounds of the discussed material, we reason about possible future d ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
Recent development in quantum computation and quantum information theory allows to extend the scope of game theory for the quantum world. The paper presents the history, basic ideas and recent development in quantum game theory. On grounds of the discussed material, we reason about possible future development of quantum game theory and its impact on information processing and the emerging information society.
Introducing categories to the practicing physicist. In: What is Category Theory
 Advanced Studies in Mathematics and Logic 30, pp.45–74, Polimetrica Publishing
, 2006
"... We argue that category theory should become a part of the daily practice of the physicist, and more specific, the quantum physicist and/or informatician. The reason for this is not that category theory is a better way of doing mathematics, but that monoidal categories constitute the actual algebra o ..."
Abstract

Cited by 12 (7 self)
 Add to MetaCart
We argue that category theory should become a part of the daily practice of the physicist, and more specific, the quantum physicist and/or informatician. The reason for this is not that category theory is a better way of doing mathematics, but that monoidal categories constitute the actual algebra of practicing physics. We will not provide rigorous definitions or anything resembling a coherent mathematical theory, but we will take the reader for a journey introducing concepts which are part of category theory in a manner that the physicist will recognize them. 1 Why? Why would a physicist care about category theory, why would he want to know about it, why would he want to show off with it? There could be many reasons. For example, you might find John Baez’s webside one of the coolest in the world. Or you might be fascinated by Chris Isham’s and Lee Smolin’s ideas on the use of topos theory in Quantum Gravity. Also the connections between knot theory, braided categories, and sophisticated mathematical physics such as quantum groups and topological quantum field theory might lure you. Or, if you are also into pure mathematics, you might just appreciate category theory due to its incredible unifying power of mathematical structures and constructions. But there is a far more onthenose reason which is never mentioned. Namely, a category is the exact mathematical structure of practicing physics! What do I mean here by a practicing physics? Consider a physical system of type A (e.g. a qubit, or two qubits, or an electron, or classical measurement data) and perform an operation f on it (e.g. perform a measurement on it) which results in a system possibly of a different type B (e.g. the system together with classical data which encodes the measurement outcome, or, just classical data in the case that the measurement destroyed the system). So typically we have
Quantum informationflow, concretely, abstractly
 PROC. QPL 2004
, 2004
"... These ‘lecture notes ’ are based on joint work with Samson Abramsky. I will survey and informally discuss the results of [3, 4, 5, 12, 13] in a pedestrian not too technical way. These include: • ‘The logic of entanglement’, that is, the identification and abstract axiomatization of the ‘quantum info ..."
Abstract

Cited by 10 (4 self)
 Add to MetaCart
These ‘lecture notes ’ are based on joint work with Samson Abramsky. I will survey and informally discuss the results of [3, 4, 5, 12, 13] in a pedestrian not too technical way. These include: • ‘The logic of entanglement’, that is, the identification and abstract axiomatization of the ‘quantum informationflow ’ which enables protocols such as quantum teleportation. 1 To this means we defined strongly compact closed categories which abstractly capture the behavioral properties of quantum entanglement. • ‘Postulates for an abstract quantum formalism ’ in which classical informationflow (e.g. token exchange) is part of the formalism. As an example, we provided a purely formal description of quantum teleportation and proved correctness in abstract generality. 2 In this formalism types reflect kinds, contra the essentially typeless von Neumann formalism [25]. Hence even concretely this formalism manifestly improves on the usual one. • ‘A highlevel approach to quantum informatics’. 3 Indeed, the above discussed work can be conceived as aiming to solve: von Neumann quantum formalism � highlevel language lowlevel language. I also provide a brief discussion on how classical and quantum uncertainty can be mixed in the above formalism (cf. density matrices). 4
Quantum and classical structures in nondeterministic computation
 Proceedings of Quanum Interaction 2009, Lecture
"... Abstract. In categorical quantum mechanics, classical structures characterize the classical interfaces of quantum resources on one hand, while on the other hand giving rise to some quantum phenomena. In the standard Hilbert space model of quantum theories, classical structures over a space correspon ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
Abstract. In categorical quantum mechanics, classical structures characterize the classical interfaces of quantum resources on one hand, while on the other hand giving rise to some quantum phenomena. In the standard Hilbert space model of quantum theories, classical structures over a space correspond to its orthonormal bases. In the present paper, we show that classical structures in the category of relations correspond to direct sums of abelian groups. Although relations are, of course, not an interesting model of quantum computation, this result has some interesting computational interpretations. If relations are viewed as denotations of nondeterministic programs, it uncovers a wide variety of nonstandard quantum structures in this familiar area of classical computation. Ironically, it also opens up a version of what in philosophy of quantum mechanics would be called an onticepistemic gap, as it provides no interface to these nonstandard quantum structures. 1
Graphical reasoning in compact closed categories for quantum computation
 AMAI
, 2009
"... Compact closed categories provide a foundational formalism for a variety of important domains, including quantum computation. These categories have a natural visualisation as a form of graphs. We present a formalism for equational reasoning about such graphs and develop this into a generic proof sys ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
Compact closed categories provide a foundational formalism for a variety of important domains, including quantum computation. These categories have a natural visualisation as a form of graphs. We present a formalism for equational reasoning about such graphs and develop this into a generic proof system with a fixed logical kernel for reasoning about compact closed categories. A salient feature of our system is that it provides a formal and declarative account of derived results that can include ‘ellipses’style notation. We illustrate the framework by instantiating it for a graphical language of quantum computation and show how this can be used to perform symbolic computation.
Extending graphical representations for compact closed categories with applications to symbolic quantum computation. AISC/MKM/Calculemus
, 2008
"... Abstract. Graphbased formalisms of quantum computation provide an abstract and symbolic way to represent and simulate computations. However, manual manipulation of such graphs is slow and error prone. We present a formalism, based on compact closed categories, that supports mechanised reasoning abo ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
Abstract. Graphbased formalisms of quantum computation provide an abstract and symbolic way to represent and simulate computations. However, manual manipulation of such graphs is slow and error prone. We present a formalism, based on compact closed categories, that supports mechanised reasoning about such graphs. This gives a compositional account of graph rewriting that preserves the underlying categorical semantics. Using this representation, we describe a generic system with a fixed logical kernel that supports reasoning about models of compact closed category. A salient feature of the system is that it provides a formal and declarative account of derived results that can include ‘ellipses’style notation. We illustrate the framework by instantiating it for a graphical language of quantum computation and show how this can be used to perform symbolic computation. Key words: graph rewriting, quantum computing, categorical logic, interactive theorem proving, graphical calculi. 1
Geometry of abstraction in quantum computation
"... Quantum algorithms are sequences of abstract operations, performed on nonexistent computers. They are in obvious need of categorical semantics. We present some steps in this direction, following earlier contributions of Abramsky, Coecke and Selinger. In particular, we analyze function abstraction i ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
Quantum algorithms are sequences of abstract operations, performed on nonexistent computers. They are in obvious need of categorical semantics. We present some steps in this direction, following earlier contributions of Abramsky, Coecke and Selinger. In particular, we analyze function abstraction in quantum computation, which turns out to characterize its classical interfaces. Some quantum algorithms provide feasible solutions of important hard problems, such as factoring and discrete log (which are the building blocks of modern cryptography). It is of a great practical interest to precisely characterize the computational resources needed to execute such quantum algorithms. There are many ideas how to build a quantum computer. Can we prove some necessary conditions? Categorical semantics help with such questions. We show how to implement an important family of quantum algorithms using just abelian groups and relations.
Turning the Liar Paradox into a Metatheorem of Basic Logic
, 2007
"... We show that selfreference can be formalized in Basic logic by means of the new connective: @, called “entanglement”. In fact, the property of nonidempotence of the connective @ is a metatheorem, which states that a selfontangled sentence loses its own identity. This prevents having selfreferent ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
We show that selfreference can be formalized in Basic logic by means of the new connective: @, called “entanglement”. In fact, the property of nonidempotence of the connective @ is a metatheorem, which states that a selfontangled sentence loses its own identity. This prevents having selfreferential paradoxes in the corresponding metalanguage. In this context, we introduce a generalized definition of selfreference, which is needed to deal with the multiplicative connectives of substructural logics.