Results 1  10
of
135
Batalin–Vilkovisky algebras and twodimensional topological field theories
 265–285. AND ALGEBRAS 231
, 1994
"... Abstract: By a BatalinVilkovisky algebra, we mean a graded commutative algebra A, together with an operator A: A.+ A. such that A +1 2 = 0, and \_A,d \ — Aa is a graded derivation of A for all a e A. In this article, we show that there is a natural structure of a BatalinVilkovisky algebra on the ..."
Abstract

Cited by 123 (4 self)
 Add to MetaCart
Abstract: By a BatalinVilkovisky algebra, we mean a graded commutative algebra A, together with an operator A: A.+ A. such that A +1 2 = 0, and \_A,d \ — Aa is a graded derivation of A for all a e A. In this article, we show that there is a natural structure of a BatalinVilkovisky algebra on the cohomology of a topological conformal field theory in two dimensions. We make use of a technique from algebraic topology: the theory of operads. BatalinVilkovisky algebras are a new type of algebraic structure on graded vector spaces, which first arose in the work of Batalin and Vilkovisky on gauge fixing in quantum field theory: a BatalinVilkovisky algebra is a differential graded commutative algebra together with an operator A: A.+A such that A m+ί 2 = 0, and Δ{abc) = A(ab)c + ( V)^aA{bc) + ( l) (α ίm
Natural Deduction and Coherence for Weakly Distributive Categories
 Journal of Pure and Applied Algebra
, 1991
"... This paper examines coherence for certain monoidal categories using techniques coming from the proof theory of linear logic, in particular making heavy use of the graphical techniques of proof nets. We define a two sided notion of proof net, suitable for categories like weakly distributive categorie ..."
Abstract

Cited by 73 (26 self)
 Add to MetaCart
This paper examines coherence for certain monoidal categories using techniques coming from the proof theory of linear logic, in particular making heavy use of the graphical techniques of proof nets. We define a two sided notion of proof net, suitable for categories like weakly distributive categories which have the twotensor structure (times/par) of linear logic, but lack a negation operator. Representing morphisms in weakly distributive categories as such nets, we derive a coherence theorem for such categories. As part of this process, we develop a theory of expansionreduction systems with equalities and a term calculus for proof nets, each of which is of independent interest. In the symmetric case the expansion reduction system on the term calculus yields a decision procedure for the equality of maps for free weakly distributive categories. The main results of this paper are these. First we have proved coherence for the full theory of weakly distributive categories, extending simi...
Dagger compact closed categories and completely positive maps (Extended Abstract)
 QPL 2005
, 2005
"... ..."
Models of Sharing Graphs: A Categorical Semantics of let and letrec
, 1997
"... To my parents A general abstract theory for computation involving shared resources is presented. We develop the models of sharing graphs, also known as term graphs, in terms of both syntax and semantics. According to the complexity of the permitted form of sharing, we consider four situations of sha ..."
Abstract

Cited by 62 (10 self)
 Add to MetaCart
To my parents A general abstract theory for computation involving shared resources is presented. We develop the models of sharing graphs, also known as term graphs, in terms of both syntax and semantics. According to the complexity of the permitted form of sharing, we consider four situations of sharing graphs. The simplest is firstorder acyclic sharing graphs represented by letsyntax, and others are extensions with higherorder constructs (lambda calculi) and/or cyclic sharing (recursive letrec binding). For each of four settings, we provide the equational theory for representing the sharing graphs, and identify the class of categorical models which are shown to be sound and complete for the theory. The emphasis is put on the algebraic nature of sharing graphs, which leads us to the semantic account of them. We describe the models in terms of the notions of symmetric monoidal categories and functors, additionally with symmetric monoidal adjunctions and traced
Recursion from Cyclic Sharing: Traced Monoidal Categories and Models of Cyclic Lambda Calculi
, 1997
"... . Cyclic sharing (cyclic graph rewriting) has been used as a practical technique for implementing recursive computation efficiently. To capture its semantic nature, we introduce categorical models for lambda calculi with cyclic sharing (cyclic lambda graphs), using notions of computation by Moggi / ..."
Abstract

Cited by 45 (5 self)
 Add to MetaCart
. Cyclic sharing (cyclic graph rewriting) has been used as a practical technique for implementing recursive computation efficiently. To capture its semantic nature, we introduce categorical models for lambda calculi with cyclic sharing (cyclic lambda graphs), using notions of computation by Moggi / Power and Robinson and traced monoidal categories by Joyal, Street and Verity. The former is used for representing the notion of sharing, whereas the latter for cyclic data structures. Our new models provide a semantic framework for understanding recursion created from cyclic sharing, which includes traditional models for recursion created from fixed points as special cases. Our cyclic lambda calculus serves as a uniform language for this wider range of models of recursive computation. 1 Introduction One of the traditional methods of interpreting a recursive program in a semantic domain is to use the least fixedpoint of continuous functions. However, in the real implementations of program...
Geometry of Interaction and Linear Combinatory Algebras
, 2000
"... this paper was quite di#erent, stemming from the axiomatics of categories of tangles (although the authors were aware of possible connections to iteration theories. In fact, similar axiomatics in the symmetric case, motivated by flowcharts and "flownomials" had been developed some years earlier by S ..."
Abstract

Cited by 44 (10 self)
 Add to MetaCart
this paper was quite di#erent, stemming from the axiomatics of categories of tangles (although the authors were aware of possible connections to iteration theories. In fact, similar axiomatics in the symmetric case, motivated by flowcharts and "flownomials" had been developed some years earlier by Stefanescu (Stefanescu 2000).) However, the first author realized, following a stimulating discussion with Gordon Plotkin, that traced monoidal categories provided a common denominator for the axiomatics of both the Girardstyle and AbramskyJagadeesanstyle versions of the Geometry of Interaction, at the basic level of the multiplicatives. This insight was presented in (Abramsky 1996), in which Girardstyle GoI was dubbed "particlestyle", since it concerns information particles or tokens flowing around a network, while the AbramskyJagadeesan style GoI was dubbed "wavestyle", since it concerns the evolution of a global information state or "wave". Formally, this distinction is based on whether the tensor product (i.e. the symmetric monoidal structure) in the underlying category is interpreted as a coproduct (particle style) or as a product (wave style). This computational distinction between coproduct and product interpretations of the same underlying network geometry turned out to have been partially anticipated, in a rather di#erent context, in a pioneering paper by E. S. Bainbridge (Bainbridge 1976), as observed by Dusko Pavlovic. These two forms of interpretation, and ways of combining them, have also been studied recently in (Stefanescu 2000). He uses the terminology "additive" for coproductbased (i.e. our "particlestyle") and "multiplicative" for productbased (i.e. our "wavestyle"); this is not suitable for our purposes, because of the clash with Linear Logic term...
Higherdimensional algebra IV: 2Tangles
"... Just as knots and links can be algebraically described as certain morphisms in the category of tangles in 3 dimensions, compact surfaces smoothly embedded in R 4 can be described as certain 2morphisms in the 2category of ‘2tangles in 4 dimensions’. Using the work of Carter, Rieger and Saito, we p ..."
Abstract

Cited by 35 (10 self)
 Add to MetaCart
Just as knots and links can be algebraically described as certain morphisms in the category of tangles in 3 dimensions, compact surfaces smoothly embedded in R 4 can be described as certain 2morphisms in the 2category of ‘2tangles in 4 dimensions’. Using the work of Carter, Rieger and Saito, we prove that this 2category is the ‘free semistrict braided monoidal 2category with duals on one unframed selfdual object’. By this universal property, any unframed selfdual object in a braided monoidal 2category with duals determines an invariant of 2tangles in 4 dimensions. 1
TFT CONSTRUCTION OF RCFT CORRELATORS V: PROOF OF MODULAR INVARIANCE AND FACTORISATION
, 2006
"... The correlators of twodimensional rational conformal field theories that are obtained in the TFT construction of [FRS I, FRS II, FRS IV] are shown to be invariant under ..."
Abstract

Cited by 33 (19 self)
 Add to MetaCart
The correlators of twodimensional rational conformal field theories that are obtained in the TFT construction of [FRS I, FRS II, FRS IV] are shown to be invariant under
Monads on Tensor Categories
 J. Pure Appl. Algebra
, 2002
"... this paper we will discuss the combination of two classical notions of category theory, both treated extensively in [CWM]. One of these is the notion of a monad or triple on a category, which goes back to Godement [G] and was rst developed by Eilenberg, Moore, Beck and others. The other is that of a ..."
Abstract

Cited by 25 (1 self)
 Add to MetaCart
this paper we will discuss the combination of two classical notions of category theory, both treated extensively in [CWM]. One of these is the notion of a monad or triple on a category, which goes back to Godement [G] and was rst developed by Eilenberg, Moore, Beck and others. The other is that of a monoidal category or tensor category, which originates with Benabou [Be] and with Mac Lane's famous coherence theorem [MacL], and which pervades much of present day mathematics. For a monad S on a tensor category, there is a natural additional structure that one can impose, namely that of a comparison map S(X