Results 1  10
of
18
What's so special about Kruskal's Theorem AND THE ORDINAL Γ0? A SURVEY OF SOME RESULTS IN PROOF THEORY
 ANNALS OF PURE AND APPLIED LOGIC, 53 (1991), 199260
, 1991
"... This paper consists primarily of a survey of results of Harvey Friedman about some proof theoretic aspects of various forms of Kruskal’s tree theorem, and in particular the connection with the ordinal Γ0. We also include a fairly extensive treatment of normal functions on the countable ordinals, an ..."
Abstract

Cited by 43 (2 self)
 Add to MetaCart
This paper consists primarily of a survey of results of Harvey Friedman about some proof theoretic aspects of various forms of Kruskal’s tree theorem, and in particular the connection with the ordinal Γ0. We also include a fairly extensive treatment of normal functions on the countable ordinals, and we give a glimpse of Veblen hierarchies, some subsystems of secondorder logic, slowgrowing and fastgrowing hierarchies including Girard’s result, and Goodstein sequences. The central theme of this paper is a powerful theorem due to Kruskal, the “tree theorem”, as well as a “finite miniaturization ” of Kruskal’s theorem due to Harvey Friedman. These versions of Kruskal’s theorem are remarkable from a prooftheoretic point of view because they are not provable in relatively strong logical systems. They are examples of socalled “natural independence phenomena”, which are considered by most logicians as more natural than the metamathematical incompleteness results first discovered by Gödel. Kruskal’s tree theorem also plays a fundamental role in computer science, because it is one of the main tools for showing that certain orderings on trees are well founded. These orderings play a crucial role in proving the termination of systems of rewrite rules and the correctness of KnuthBendix completion procedures. There is also a close connection between a certain infinite countable ordinal called Γ0 and Kruskal’s theorem. Previous definitions of the function involved in this connection are known to be incorrect, in that, the function is not monotonic. We offer a repaired definition of this function, and explore briefly the consequences of its existence.
Ordinal numbers and the Hilbert Basis Theorem
 J. Symbolic Logic
, 1988
"... JSTOR is a notforprofit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JS ..."
Abstract

Cited by 25 (1 self)
 Add to MetaCart
JSTOR is a notforprofit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend access to The
A classification of rapidly growing Ramsey functions
 PROC. AMER. MATH. SOC
, 2003
"... Let f be a numbertheoretic function. A finite set X of natural numbers is called flarge if card(X) ≥ f(min(X)). Let PHf be the Paris Harrington statement where we replace the largeness condition by a corresponding flargeness condition. We classify those functions f for which the statement PHf i ..."
Abstract

Cited by 17 (6 self)
 Add to MetaCart
Let f be a numbertheoretic function. A finite set X of natural numbers is called flarge if card(X) ≥ f(min(X)). Let PHf be the Paris Harrington statement where we replace the largeness condition by a corresponding flargeness condition. We classify those functions f for which the statement PHf is independent of first order (Peano) arithmetic PA.Iffis a fixed iteration of the binary length function, then PHf is independent. On the other hand PHlog ∗ is provable in PA. More precisely let fα(i):=i  H −1 α (i) where  i h denotes the htimes iterated binary length of i and H−1 α denotes the inverse function of the αth member Hα of the Hardy hierarchy. Then PHfα is independent of PA (for α ≤ ε0) iffα = ε0.
Inductive, projective, and retractive types
, 1993
"... We give an analysis of classes of recursive types by presenting two extensions of the simplytyped lambda calculus. The first language only allows recursive types with builtin principles of wellfounded induction, while the second allows more general recursive types which permit nonterminating com ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
We give an analysis of classes of recursive types by presenting two extensions of the simplytyped lambda calculus. The first language only allows recursive types with builtin principles of wellfounded induction, while the second allows more general recursive types which permit nonterminating computations. We discuss the expressive power of the languages, examine the properties of reductionbased operational semantics for them, and give examples of their use in expressing iteration over large ordinals and in simulating both callbyname and callbyvalue versions of the untyped lambda calculus. The motivations for this work come from category theoretic models. 1
Abstract Syntactic Finitism in the Metatheory of Programming Languages
, 2010
"... One of the central goals of programminglanguage research is to develop mathematically sound formal methods for precisely specifying and reasoning about the behavior of programs. However, just as software developers sometimes make mistakes when programming, researchers sometimes make mistakes when p ..."
Abstract
 Add to MetaCart
One of the central goals of programminglanguage research is to develop mathematically sound formal methods for precisely specifying and reasoning about the behavior of programs. However, just as software developers sometimes make mistakes when programming, researchers sometimes make mistakes when proving that a formal method is mathematically sound. As the field of programminglanguage research has grown, these proofs have become larger and more complex, and thus harder to verify on paper. This phenomenon has motivated a great deal of research into the development of logical systems that provide an automated means to apply— and verify the application of—trusted reasoning principles to concrete proofs. The boundary between trusted and untrusted reasoning principles is inherently blurry, and different researchers draw the line in different places. However, just as certain principles are widely recognized to allow the proofs of contradictory statements, others are so uncontroversially ubiquitous in practice that they can be considered beyond reproach. We posit the following questions: (1) what are these principles and (2) how much can we do with them?