Results 1  10
of
209
Instancebased learning algorithms
 Machine Learning
, 1991
"... Abstract. Storing and using specific instances improves the performance of several supervised learning algorithms. These include algorithms that learn decision trees, classification rules, and distributed networks. However, no investigation has analyzed algorithms that use only specific instances to ..."
Abstract

Cited by 1053 (18 self)
 Add to MetaCart
Abstract. Storing and using specific instances improves the performance of several supervised learning algorithms. These include algorithms that learn decision trees, classification rules, and distributed networks. However, no investigation has analyzed algorithms that use only specific instances to solve incremental learning tasks. In this paper, we describe a framework and methodology, called instancebased learning, that generates classification predictions using only specific instances. Instancebased learning algorithms do not maintain a set of abstractions derived from specific instances. This approach extends the nearest neighbor algorithm, which has large storage requirements. We describe how storage requirements can be significantly reduced with, at most, minor sacrifices in learning rate and classification accuracy. While the storagereducing algorithm performs well on several realworld databases, its performance degrades rapidly with the level of attribute noise in training instances. Therefore, we extended it with a significance test to distinguish noisy instances. This extended algorithm's performance degrades gracefully with increasing noise levels and compares favorably with a noisetolerant decision tree algorithm.
An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions
 ACMSIAM SYMPOSIUM ON DISCRETE ALGORITHMS
, 1994
"... Consider a set S of n data points in real ddimensional space, R d , where distances are measured using any Minkowski metric. In nearest neighbor searching we preprocess S into a data structure, so that given any query point q 2 R d , the closest point of S to q can be reported quickly. Given any po ..."
Abstract

Cited by 786 (31 self)
 Add to MetaCart
Consider a set S of n data points in real ddimensional space, R d , where distances are measured using any Minkowski metric. In nearest neighbor searching we preprocess S into a data structure, so that given any query point q 2 R d , the closest point of S to q can be reported quickly. Given any positive real ffl, a data point p is a (1 + ffl)approximate nearest neighbor of q if its distance from q is within a factor of (1 + ffl) of the distance to the true nearest neighbor. We show that it is possible to preprocess a set of n points in R d in O(dn log n) time and O(dn) space, so that given a query point q 2 R d , and ffl ? 0, a (1 + ffl)approximate nearest neighbor of q can be computed in O(c d;ffl log n) time, where c d;ffl d d1 + 6d=ffle d is a factor depending only on dimension and ffl. In general, we show that given an integer k 1, (1 + ffl)approximations to the k nearest neighbors of q can be computed in additional O(kd log n) time.
On the optimality of the simple Bayesian classifier under zeroone loss
 MACHINE LEARNING
, 1997
"... The simple Bayesian classifier is known to be optimal when attributes are independent given the class, but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical results showing that it performs surprisingly well in many domains containin ..."
Abstract

Cited by 601 (25 self)
 Add to MetaCart
The simple Bayesian classifier is known to be optimal when attributes are independent given the class, but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical results showing that it performs surprisingly well in many domains containing clear attribute dependences suggest that the answer to this question may be positive. This article shows that, although the Bayesian classifier’s probability estimates are only optimal under quadratic loss if the independence assumption holds, the classifier itself can be optimal under zeroone loss (misclassification rate) even when this assumption is violated by a wide margin. The region of quadraticloss optimality of the Bayesian classifier is in fact a secondorder infinitesimal fraction of the region of zeroone optimality. This implies that the Bayesian classifier has a much greater range of applicability than previously thought. For example, in this article it is shown to be optimal for learning conjunctions and disjunctions, even though they violate the independence assumption. Further, studies in artificial domains show that it will often outperform more powerful classifiers for common training set sizes and numbers of attributes, even if its bias is a priori much less appropriate to the domain. This article’s results also imply that detecting attribute dependence is not necessarily the best way to extend the Bayesian classifier, and this is also verified empirically.
Locally weighted learning
 ARTIFICIAL INTELLIGENCE REVIEW
, 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract

Cited by 448 (52 self)
 Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, assessing predictions, handling noisy data and outliers, improving the quality of predictions by tuning t parameters, interference between old and new data, implementing locally weighted learning e ciently, and applications of locally weighted learning. A companion paper surveys how locally weighted learning can be used in robot learning and control.
Similarity search in high dimensions via hashing
, 1999
"... The nearest or nearneighbor query problems arise in a large variety of database applications, usually in the context of similarity searching. Of late, there has been increasing interest in building search/index structures for performing similarity search over highdimensional data, e.g., image dat ..."
Abstract

Cited by 415 (12 self)
 Add to MetaCart
The nearest or nearneighbor query problems arise in a large variety of database applications, usually in the context of similarity searching. Of late, there has been increasing interest in building search/index structures for performing similarity search over highdimensional data, e.g., image databases, document collections, timeseries databases, and genome databases. Unfortunately, all known techniques for solving this problem fall prey to the \curse of dimensionality. " That is, the data structures scale poorly with data dimensionality; in fact, if the number of dimensions exceeds 10 to 20, searching in kd trees and related structures involves the inspection of a large fraction of the database, thereby doing no better than bruteforce linear search. It has been suggested that since the selection of features and the choice of a distance metric in typical applications is rather heuristic, determining an approximate nearest neighbor should su ce for most practical purposes. In this paper, we examine a novel scheme for approximate similarity search based on hashing. The basic idea is to hash the points
SMOTE: Synthetic Minority Oversampling Technique
 Journal of Artificial Intelligence Research
, 2002
"... An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often realworld data sets are predominately composed of ``normal'' examples with only a small percentage of ``abn ..."
Abstract

Cited by 301 (21 self)
 Add to MetaCart
An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often realworld data sets are predominately composed of ``normal'' examples with only a small percentage of ``abnormal'' or ``interesting'' examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Undersampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of oversampling the minority (abnormal) class and undersampling the majority (normal) class can achieve better classifier performance (in ROC space) than only undersampling the majority class. This paper also shows that a combination of our method of oversampling the minority class and undersampling the majority class can achieve better classifier performance (in ROC space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of oversampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.
Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier
"... The simple Bayesian classifier (SBC) is commonly thought to assume that attributes are independent given the class, but this is apparently contradicted by the surprisingly good performance it exhibits in many domains that contain clear attribute dependences. No explanation for this has been proposed ..."
Abstract

Cited by 295 (8 self)
 Add to MetaCart
The simple Bayesian classifier (SBC) is commonly thought to assume that attributes are independent given the class, but this is apparently contradicted by the surprisingly good performance it exhibits in many domains that contain clear attribute dependences. No explanation for this has been proposed so far. In this paper we show that the SBC does not in fact assume attribute independence, and can be optimal even when this assumption is violated by a wide margin. The key to this finding lies in the distinction between classification and probability estimation: correct classification can be achieved even when the probability estimates used contain large errors. We show that the previouslyassumed region of optimality of the SBC is a secondorder infinitesimal fraction of the actual one. This is followed by the derivation of several necessary and several sufficient conditions for the optimality of the SBC. For example, the SBC is optimal for learning arbitrary conjunctions and disjunctions, even though they violate the independence assumption. The paper also reports empirical evidence of the SBC's competitive performance in domains containing substantial degrees of attribute dependence.
Learning and Revising User Profiles: The Identification of Interesting Web Sites
 Machine Learning
, 1997
"... . We discuss algorithms for learning and revising user profiles that can determine which World Wide Web sites on a given topic would be interesting to a user. We describe the use of a naive Bayesian classifier for this task, and demonstrate that it can incrementally learn profiles from user feedback ..."
Abstract

Cited by 288 (14 self)
 Add to MetaCart
. We discuss algorithms for learning and revising user profiles that can determine which World Wide Web sites on a given topic would be interesting to a user. We describe the use of a naive Bayesian classifier for this task, and demonstrate that it can incrementally learn profiles from user feedback on the interestingness of Web sites. Furthermore, the Bayesian classifier may easily be extended to revise user provided profiles. In an experimental evaluation we compare the Bayesian classifier to computationally more intensive alternatives, and show that it performs at least as well as these approaches throughout a range of different domains. In addition, we empirically analyze the effects of providing the classifier with background knowledge in form of user defined profiles and examine the use of lexical knowledge for feature selection. We find that both approaches can substantially increase the prediction accuracy. Keywords: Information filtering, intelligent agents, multistrategy lea...
Geometric Range Searching and Its Relatives
 CONTEMPORARY MATHEMATICS
"... ... process a set S of points in so that the points of S lying inside a query R region can be reported or counted quickly. Wesurvey the known techniques and data structures for range searching and describe their application to other related searching problems. ..."
Abstract

Cited by 256 (40 self)
 Add to MetaCart
... process a set S of points in so that the points of S lying inside a query R region can be reported or counted quickly. Wesurvey the known techniques and data structures for range searching and describe their application to other related searching problems.
Integrating Multiple Knowledge Sources to Disambiguate Word Sense: An ExemplarBased Approach
 IN PROCEEDINGS OF THE 34TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS
, 1996
"... In this paper, we present a new approach for word sense disambiguation (WSD) using an exemplarbased learning algorithm. This approach ..."
Abstract

Cited by 241 (8 self)
 Add to MetaCart
In this paper, we present a new approach for word sense disambiguation (WSD) using an exemplarbased learning algorithm. This approach