Results 1 
3 of
3
Subquadratictime factoring of polynomials over finite fields
 Math. Comp
, 1998
"... Abstract. New probabilistic algorithms are presented for factoring univariate polynomials over finite fields. The algorithms factor a polynomial of degree n over a finite field of constant cardinality in time O(n 1.815). Previous algorithms required time Θ(n 2+o(1)). The new algorithms rely on fast ..."
Abstract

Cited by 68 (11 self)
 Add to MetaCart
Abstract. New probabilistic algorithms are presented for factoring univariate polynomials over finite fields. The algorithms factor a polynomial of degree n over a finite field of constant cardinality in time O(n 1.815). Previous algorithms required time Θ(n 2+o(1)). The new algorithms rely on fast matrix multiplication techniques. More generally, to factor a polynomial of degree n over the finite field Fq with q elements, the algorithms use O(n 1.815 log q) arithmetic operations in Fq. The new “baby step/giant step ” techniques used in our algorithms also yield new fast practical algorithms at superquadratic asymptotic running time, and subquadratictime methods for manipulating normal bases of finite fields. 1.
Searching for Primitive Roots in Finite Fields
, 1992
"... Let GF(p n ) be the finite field with p n elements where p is prime. We consider the problem of how to deterministically generate in polynomial time a subset of GF(p n ) that contains a primitive root, i.e., an element that generates the multiplicative group of nonzero elements in GF(p n ). ..."
Abstract

Cited by 39 (3 self)
 Add to MetaCart
Let GF(p n ) be the finite field with p n elements where p is prime. We consider the problem of how to deterministically generate in polynomial time a subset of GF(p n ) that contains a primitive root, i.e., an element that generates the multiplicative group of nonzero elements in GF(p n ). We present three results. First, we present a solution to this problem for the case where p is small, i.e., p = n O(1) . Second, we present a solution to this problem under the assumption of the Extended Riemann Hypothesis (ERH) for the case where p is large and n = 2. Third, we give a quantitative improvement of a theorem of Wang on the least primitive root for GF(p) assuming the ERH. Appeared in Mathematics of Computation 58, pp. 369380, 1992. An earlier version of this paper appeared in the 22nd Annual ACM Symposium on Theory of Computing (1990), pp. 546554. 1980 Mathematics Subject Classification (1985 revision): 11T06. 1. Introduction Consider the problem of finding a primitive ...
Constructing nonresidues in finite fields and the extended Riemann hypothesis
 Math. Comp
, 1991
"... Abstract. We present a new deterministic algorithm for the problem of constructing kth power nonresidues in finite fields Fpn,wherepis prime and k is a prime divisor of pn −1. We prove under the assumption of the Extended Riemann Hypothesis (ERH), that for fixed n and p →∞, our algorithm runs in pol ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
Abstract. We present a new deterministic algorithm for the problem of constructing kth power nonresidues in finite fields Fpn,wherepis prime and k is a prime divisor of pn −1. We prove under the assumption of the Extended Riemann Hypothesis (ERH), that for fixed n and p →∞, our algorithm runs in polynomial time. Unlike other deterministic algorithms for this problem, this polynomialtime bound holds even if k is exponentially large. More generally, assuming the ERH, in time (n log p) O(n) we can construct a set of elements