Results 1  10
of
152
Efficient Query Evaluation on Probabilistic Databases
, 2004
"... We describe a system that supports arbitrarily complex SQL queries with ”uncertain” predicates. The query semantics is based on a probabilistic model and the results are ranked, much like in Information Retrieval. Our main focus is efficient query evaluation, a problem that has not received attentio ..."
Abstract

Cited by 442 (46 self)
 Add to MetaCart
(Show Context)
We describe a system that supports arbitrarily complex SQL queries with ”uncertain” predicates. The query semantics is based on a probabilistic model and the results are ranked, much like in Information Retrieval. Our main focus is efficient query evaluation, a problem that has not received attention in the past. We describe an optimization algorithm that can compute efficiently most queries. We show, however, that the data complexity of some queries is #Pcomplete, which implies that these queries do not admit any efficient evaluation methods. For these queries we describe both an approximation algorithm and a MonteCarlo simulation algorithm.
ProbView: A Flexible Probabilistic Database System
 ACM TRANSACTIONS ON DATABASE SYSTEMS
, 1997
"... ... In this article, we characterize, using postulates, whole classes of strategies for conjunction, disjunction, and negation, meaningful from the viewpoint of probability theory. (1) We propose a probabilistic relational data model and a generic probabilistic relational algebra that neatly capture ..."
Abstract

Cited by 196 (14 self)
 Add to MetaCart
... In this article, we characterize, using postulates, whole classes of strategies for conjunction, disjunction, and negation, meaningful from the viewpoint of probability theory. (1) We propose a probabilistic relational data model and a generic probabilistic relational algebra that neatly captures various strategies satisfying the postulates, within a single unified framework. (2) We show that as long as the chosen strategies can be computed in polynomial time, queries in the positive fragment of the probabilistic relational algebra have essentially the same data complexity as classical relational algebra. (3) We establish various containments and equivalences between algebraic expressions, similar in spirit to those in classical algebra. (4) We develop algorithms for maintaining materialized probabilistic views. (5) Based on these ideas, we have developed
Interpreting Bayesian Logic Programs
 PROCEEDINGS OF THE WORKINPROGRESS TRACK AT THE 10TH INTERNATIONAL CONFERENCE ON INDUCTIVE LOGIC PROGRAMMING
, 2001
"... Various proposals for combining first order logic with Bayesian nets exist. We introduce the formalism of Bayesian logic programs, which is basically a simplification and reformulation of Ngo and Haddawys probabilistic logic programs. However, Bayesian logic programs are sufficiently powerful to ..."
Abstract

Cited by 127 (8 self)
 Add to MetaCart
(Show Context)
Various proposals for combining first order logic with Bayesian nets exist. We introduce the formalism of Bayesian logic programs, which is basically a simplification and reformulation of Ngo and Haddawys probabilistic logic programs. However, Bayesian logic programs are sufficiently powerful to represent essentially the same knowledge in a more elegant manner. The elegance is illustrated by the fact that they can represent both Bayesian nets and definite clause programs (as in "pure" Prolog) and that their kernel in Prolog is actually an adaptation of an usual Prolog metainterpreter.
Lifted firstorder probabilistic inference
 In Proceedings of IJCAI05, 19th International Joint Conference on Artificial Intelligence
, 2005
"... Most probabilistic inference algorithms are specified and processed on a propositional level. In the last decade, many proposals for algorithms accepting firstorder specifications have been presented, but in the inference stage they still operate on a mostly propositional representation level. [Poo ..."
Abstract

Cited by 126 (8 self)
 Add to MetaCart
Most probabilistic inference algorithms are specified and processed on a propositional level. In the last decade, many proposals for algorithms accepting firstorder specifications have been presented, but in the inference stage they still operate on a mostly propositional representation level. [Poole, 2003] presented a method to perform inference directly on the firstorder level, but this method is limited to special cases. In this paper we present the first exact inference algorithm that operates directly on a firstorder level, and that can be applied to any firstorder model (specified in a language that generalizes undirected graphical models). Our experiments show superior performance in comparison with propositional exact inference. 1
Parameter learning of logic programs for symbolicstatistical modeling
 Journal of Artificial Intelligence Research
, 2001
"... We propose a logical/mathematical framework for statistical parameter learning of parameterized logic programs, i.e. de nite clause programs containing probabilistic facts with a parameterized distribution. It extends the traditional least Herbrand model semantics in logic programming to distributio ..."
Abstract

Cited by 121 (21 self)
 Add to MetaCart
(Show Context)
We propose a logical/mathematical framework for statistical parameter learning of parameterized logic programs, i.e. de nite clause programs containing probabilistic facts with a parameterized distribution. It extends the traditional least Herbrand model semantics in logic programming to distribution semantics, possible world semantics with a probability distribution which is unconditionally applicable to arbitrary logic programs including ones for HMMs, PCFGs and Bayesian networks. We also propose a new EM algorithm, the graphical EM algorithm, thatrunsfora class of parameterized logic programs representing sequential decision processes where each decision is exclusive and independent. It runs on a new data structure called support graphs describing the logical relationship between observations and their explanations, and learns parameters by computing inside and outside probability generalized for logic programs. The complexity analysis shows that when combined with OLDT search for all explanations for observations, the graphical EM algorithm, despite its generality, has the same time complexity as existing EM algorithms, i.e. the BaumWelch algorithm for HMMs, the InsideOutside algorithm for PCFGs, and the one for singly connected Bayesian networks that have beendeveloped independently in each research eld. Learning experiments with PCFGs using two corpora of moderate size indicate that the graphical EM algorithm can signi cantly outperform the InsideOutside algorithm. 1.
Probabilistic reasoning with answer sets
 In Proceedings of LPNMR7
, 2004
"... Abstract. We give a logic programming based account of probability and describe a declarative language Plog capable of reasoning which combines both logical and probabilistic arguments. Several nontrivial examples illustrate the use of Plog for knowledge representation. 1 ..."
Abstract

Cited by 94 (13 self)
 Add to MetaCart
(Show Context)
Abstract. We give a logic programming based account of probability and describe a declarative language Plog capable of reasoning which combines both logical and probabilistic arguments. Several nontrivial examples illustrate the use of Plog for knowledge representation. 1
Logic programs with annotated disjunctions
 In Proc. Int’l Conf. on Logic Programming
, 2004
"... Abstract. Current literature offers a number of different approaches to what could generally be called "probabilistic logic programming". These are usually based on Horn clauses. Here, we introduce a new formalism, Logic Programs with Annotated Disjunctions, based on disjunctive lo ..."
Abstract

Cited by 78 (6 self)
 Add to MetaCart
(Show Context)
Abstract. Current literature offers a number of different approaches to what could generally be called &quot;probabilistic logic programming&quot;. These are usually based on Horn clauses. Here, we introduce a new formalism, Logic Programs with Annotated Disjunctions, based on disjunctive logic programs. In this formalism, each of the disjuncts in the head of a clause is annotated with a probability. Viewing such a set of probabilistic disjunctive clauses as a probabilistic disjunction of normal logic programs allows us to derive a possible world semantics, more precisely, a probability distribution on the set of all Herbrand interpretations. We demonstrate the strength of this formalism by some examples and compare it to related work.
Probabilistic Deductive Databases
, 1994
"... Knowledgebase (KB) systems must typically deal with imperfection in knowledge, e.g. in the form of imcompleteness, inconsistency, uncertainty, to name a few. Currently KB system development is mainly based on the expert system technology. Expert systems, through their support for rulebased program ..."
Abstract

Cited by 71 (2 self)
 Add to MetaCart
Knowledgebase (KB) systems must typically deal with imperfection in knowledge, e.g. in the form of imcompleteness, inconsistency, uncertainty, to name a few. Currently KB system development is mainly based on the expert system technology. Expert systems, through their support for rulebased programming, uncertainty, etc., offer a convenient framework for KB system development. But they require the user to be well versed with the low level details of system implementation. The manner in which uncertainty is handled has little mathematical basis. There is no decent notion of query optimization, forcing the user to take the responsibility for an efficient implementation of the KB system. We contend KB system development can and should take advantage of the deductive database technology, which overcomes most of the above limitations. An important problem here is to extend deductive databases into providing a systematic basis for rulebased programming with imperfect knowledge. In this paper, we are interested in an exension handling probabilistic knowledge.
FLORA2: A RuleBased Knowledge Representation and Inference Infrastructure for the Semantic Web
 In Second International Conference on Ontologies, Databases and Applications of Semantics (ODBASE
, 2003
"... Abstract. Flora2 is a rulebased objectoriented knowledge base system designed for a variety of automated tasks on the Semantic Web, ranging from metadata management to information integration to intelligent agents. The Flora2 system integrates Flogic, HiLog, and Transaction Logic into a cohere ..."
Abstract

Cited by 67 (5 self)
 Add to MetaCart
Abstract. Flora2 is a rulebased objectoriented knowledge base system designed for a variety of automated tasks on the Semantic Web, ranging from metadata management to information integration to intelligent agents. The Flora2 system integrates Flogic, HiLog, and Transaction Logic into a coherent knowledge representation and inference language. The result is a flexible and natural framework that combines rulebased and objectoriented paradigms. This paper discusses the principles underlying the design of the Flora2 system and describes its salient features, including metaprogramming, reification, logical database updates, encapsulation, and support for dynamic modules. 1