Results 1 
3 of
3
Counting complexity classes for numeric computations II: Algebraic and semialgebraic sets (Extended Abstract)
 J. COMPL
, 2004
"... We define counting #P classes #P ¡ and in the BlumShubSmale setting of computations over the real or complex numbers, respectively. The problems of counting the number of solutions of systems of polynomial inequalities over ¢ , or of systems of polynomial equalities over £ , respectively, turn ou ..."
Abstract

Cited by 21 (13 self)
 Add to MetaCart
We define counting #P classes #P ¡ and in the BlumShubSmale setting of computations over the real or complex numbers, respectively. The problems of counting the number of solutions of systems of polynomial inequalities over ¢ , or of systems of polynomial equalities over £ , respectively, turn out to be natural complete problems in these classes. We investigate to what extent the new counting classes capture the complexity of computing basic topological invariants of semialgebraic sets (over ¢ ) and algebraic sets (over £). We prove that the problem to compute the (modified) Euler characteristic of semialgebraic sets is FP #P¤complete, and that the problem to compute the geometric degree of complex algebraic sets is FP #P¥complete. We also define new counting complexity classes GCR and GCC in the classical Turing model via taking Boolean parts of the classes above, and show that the problems to compute the Euler characteristic and the geometric degree of (semi)algebraic sets given by integer polynomials are complete in these classes. We complement the results in the Turing model by proving, for all k ¦ ∈ , the FPSPACEhardness of the problem of computing the kth Betti number of the set of real zeros of a given integer polynomial. This holds with respect to the singular homology as well as for the BorelMoore homology.
VPSPACE and a transfer theorem over the reals
, 2007
"... We introduce a new class VPSPACE of families of polynomials. Roughly speaking, a family of polynomials is in VPSPACE if its coefficients can be computed in polynomial space. Our main theorem is that if (uniform, constantfree) VPSPACE families can be evaluated efficiently then the class PARR of deci ..."
Abstract

Cited by 7 (4 self)
 Add to MetaCart
We introduce a new class VPSPACE of families of polynomials. Roughly speaking, a family of polynomials is in VPSPACE if its coefficients can be computed in polynomial space. Our main theorem is that if (uniform, constantfree) VPSPACE families can be evaluated efficiently then the class PARR of decision problems that can be solved in parallel polynomial time over the real numbers collapses to PR. As a result, one must first be able to show that there are VPSPACE families which are hard to evaluate in order to separate PR from NPR, or even from PARR.
On the Complexity of Counting Components of Algebraic Varieties
, 2008
"... We give a uniform method for the two problems of counting the connected and irreducible components of complex algebraic varieties. Our algorithms are purely algebraic, i.e., they use only the field structure of C. They work in parallel polynomial time, i.e., they can be implemented by algebraic circ ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
We give a uniform method for the two problems of counting the connected and irreducible components of complex algebraic varieties. Our algorithms are purely algebraic, i.e., they use only the field structure of C. They work in parallel polynomial time, i.e., they can be implemented by algebraic circuits of polynomial depth. The design of our algorithms relies on the concept of algebraic differential forms. A further important building block is an algorithm of Szántó computing a variant of characteristic sets. Furthermore, we use these methods to obtain a parallel polynomial time algorithm for computing the Hilbert polynomial of a projective variety which is arithmetically CohenMacaulay.