Results 1  10
of
244
Monotone Complexity
, 1990
"... We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a simple ..."
Abstract

Cited by 2350 (12 self)
 Add to MetaCart
We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a simple notion of monotone reducibility and exhibit complete problems. This provides a framework for stating existing results and asking new questions. We show that mNL (monotone nondeterministic logspace) is not closed under complementation, in contrast to Immerman's and Szelepcs 'enyi's nonmonotone result [Imm88, Sze87] that NL = coNL; this is a simple extension of the monotone circuit depth lower bound of Karchmer and Wigderson [KW90] for stconnectivity. We also consider mBWBP (monotone bounded width branching programs) and study the question of whether mBWBP is properly contained in mNC 1 , motivated by Barrington's result [Bar89] that BWBP = NC 1 . Although we cannot answer t...
The Computational Complexity of Propositional STRIPS Planning
 Artificial Intelligence
, 1994
"... I present several computational complexity results for propositional STRIPS planning, i.e., STRIPS planning restricted to ground formulas. Different planning problems can be defined by restricting the type of formulas, placing limits on the number of pre and postconditions, by restricting negation ..."
Abstract

Cited by 299 (3 self)
 Add to MetaCart
I present several computational complexity results for propositional STRIPS planning, i.e., STRIPS planning restricted to ground formulas. Different planning problems can be defined by restricting the type of formulas, placing limits on the number of pre and postconditions, by restricting negation in pre and postconditions, and by requiring optimal plans. For these types of restrictions, I show when planning is tractable (polynomial) and intractable (NPhard) . In general, it is PSPACEcomplete to determine if a given planning instance has any solutions. Extremely severe restrictions on both the operators and the formulas are required to guarantee polynomial time or even NPcompleteness. For example, when only ground literals are permitted, determining plan existence is PSPACEcomplete even if operators are limited to two preconditions and two postconditions. When definite Horn ground formulas are permitted, determining plan existence is PSPACEcomplete even if operators are limited t...
An AutomataTheoretic Approach to BranchingTime Model Checking
 JOURNAL OF THE ACM
, 1998
"... Translating linear temporal logic formulas to automata has proven to be an effective approach for implementing lineartime modelchecking, and for obtaining many extensions and improvements to this verification method. On the other hand, for branching temporal logic, automatatheoretic techniques ..."
Abstract

Cited by 298 (64 self)
 Add to MetaCart
Translating linear temporal logic formulas to automata has proven to be an effective approach for implementing lineartime modelchecking, and for obtaining many extensions and improvements to this verification method. On the other hand, for branching temporal logic, automatatheoretic techniques have long been thought to introduce an exponential penalty, making them essentially useless for modelchecking. Recently, Bernholtz and Grumberg have shown that this exponential penalty can be avoided, though they did not match the linear complexity of nonautomatatheoretic algorithms. In this paper we show that alternating tree automata are the key to a comprehensive automatatheoretic framework for branching temporal logics. Not only, as was shown by Muller et al., can they be used to obtain optimal decision procedures, but, as we show here, they also make it possible to derive optimal modelchecking algorithms. Moreover, the simple combinatorial structure that emerges from the a...
Nondeterministic Space is Closed Under Complementation
, 1988
"... this paper we show that nondeterministic space s(n) is closed under complementation, for s(n) greater than or equal to log n. It immediately follows that the contextsensitive languages are closed under complementation, thus settling a question raised by Kuroda in 1964 [9]. See Hartmanis and Hunt [4 ..."
Abstract

Cited by 236 (15 self)
 Add to MetaCart
this paper we show that nondeterministic space s(n) is closed under complementation, for s(n) greater than or equal to log n. It immediately follows that the contextsensitive languages are closed under complementation, thus settling a question raised by Kuroda in 1964 [9]. See Hartmanis and Hunt [4] for a discussion of the history and importance of this problem, and Hopcroft and Ullman [5] for all relevant background material and definitions. The history behind the proof is as follows. In 1981 we showed that the set of firstorder inductive definitions over finite structures is closed under complementation [6]. This holds with or without an ordering relation on the structure. If an ordering is present the resulting class is P. Many people expected that the result was false in the absence of an ordering. In 1983 we studied firstorder logic, with ordering, with a transitive closure operator. We showed that NSPACE[log n] is equal to (FO + pos TC), i.e. firstorder logic with ordering, plus a transitive closure operation, in which the transitive closure operator does not appear within any negation symbols [7]. Now we have returned to the issue of complementation in the light of recent results on the collapse of the log space hierarchies [10, 2, 14]. We have shown that the class (FO + pos TC) is closed under complementation. Our
Randomness is Linear in Space
 Journal of Computer and System Sciences
, 1993
"... We show that any randomized algorithm that runs in space S and time T and uses poly(S) random bits can be simulated using only O(S) random bits in space S and time T poly(S). A deterministic simulation in space S follows. Of independent interest is our main technical tool: a procedure which extracts ..."
Abstract

Cited by 229 (20 self)
 Add to MetaCart
We show that any randomized algorithm that runs in space S and time T and uses poly(S) random bits can be simulated using only O(S) random bits in space S and time T poly(S). A deterministic simulation in space S follows. Of independent interest is our main technical tool: a procedure which extracts randomness from a defective random source using a small additional number of truly random bits. 1
An automatatheoretic approach to linear temporal logic
 Logics for Concurrency: Structure versus Automata, volume 1043 of Lecture Notes in Computer Science
, 1996
"... Abstract. The automatatheoretic approach to linear temporal logic uses the theory of automata as a unifying paradigm for program specification, verification, and synthesis. Both programs and specifications are in essence descriptions of computations. These computations can be viewed as words over s ..."
Abstract

Cited by 217 (23 self)
 Add to MetaCart
Abstract. The automatatheoretic approach to linear temporal logic uses the theory of automata as a unifying paradigm for program specification, verification, and synthesis. Both programs and specifications are in essence descriptions of computations. These computations can be viewed as words over some alphabet. Thus,programs and specificationscan be viewed as descriptions of languagesover some alphabet. The automatatheoretic perspective considers the relationships between programs and their specifications as relationships between languages.By translating programs and specifications to automata, questions about programs and their specifications can be reduced to questions about automata. More specifically, questions such as satisfiability of specifications and correctness of programs with respect to their specifications can be reduced to questions such as nonemptiness and containment of automata. Unlike classical automata theory, which focused on automata on finite words, the applications to program specification, verification, and synthesis, use automata on infinite words, since the computations in which we are interested are typically infinite. This paper provides an introduction to the theory of automata on infinite words and demonstrates its applications to program specification, verification, and synthesis. 1
Tableau Algorithms for Description Logics
 STUDIA LOGICA
, 2000
"... Description logics are a family of knowledge representation formalisms that are descended from semantic networks and frames via the system Klone. During the last decade, it has been shown that the important reasoning problems (like subsumption and satisfiability) in a great variety of descriptio ..."
Abstract

Cited by 193 (21 self)
 Add to MetaCart
Description logics are a family of knowledge representation formalisms that are descended from semantic networks and frames via the system Klone. During the last decade, it has been shown that the important reasoning problems (like subsumption and satisfiability) in a great variety of description logics can be decided using tableaulike algorithms. This is not very surprising since description logics have turned out to be closely related to propositional modal logics and logics of programs (such as propositional dynamic logic), for which tableau procedures have been quite successful. Nevertheless, due to different underlying intuitions and applications, most description logics differ significantly from runofthemill modal and program logics. Consequently, the research on tableau algorithms in description logics led to new techniques and results, which are, however, also of interest for modal logicians. In this article, we will focus on three features that play an important role in description logics (number restrictions, terminological axioms, and role constructors), and show how they can be taken into account by tableau algorithms.
The NPcompleteness column: an ongoing guide
 Journal of Algorithms
, 1985
"... This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co ..."
Abstract

Cited by 188 (0 self)
 Add to MetaCart
This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co., New York, 1979 (hereinafter referred to as ‘‘[G&J]’’; previous columns will be referred to by their dates). A background equivalent to that provided by [G&J] is assumed, and, when appropriate, crossreferences will be given to that book and the list of problems (NPcomplete and harder) presented there. Readers who have results they would like mentioned (NPhardness, PSPACEhardness, polynomialtimesolvability, etc.) or open problems they would like publicized, should
Reasoning about Systems with Many Processes
 Journal of the ACM
, 1992
"... Abstract. Methods are given for automatically verifying temporal properties of concurrent systems containing an arbitrary number of finitestate processes that communicate using CCS actions. Two models of systems are considered. Systems in the first model consist of a unique contro [ process and an ..."
Abstract

Cited by 130 (2 self)
 Add to MetaCart
Abstract. Methods are given for automatically verifying temporal properties of concurrent systems containing an arbitrary number of finitestate processes that communicate using CCS actions. Two models of systems are considered. Systems in the first model consist of a unique contro [ process and an arbitrary number of user processes with identical detlnitions, For this model, a decision procedure to check whether all the executions of a process satisfy a given specification is presented. This algorithm runs in time double exponential mthe sizes of the control andthe user process definitions. It is also proven that it is decidable whether all the fair executions of a process satisfy a gwen specification. The second model is a special case of the first. In this model, all the processes have identical definitions. For this model, an efficient decision procedure is presented that checks if every execution of a process satisfies a given temporal logic specification. This algorithm runs in time polynomial inthesize of the process definition. Itisshown howtoverify certamglobal properties such as mutual exchrslon and absence of deadlocks. Finally, it is shown how these decision procedures can beusedto reason about certain systems with a communication network,