Results 1  10
of
336
SemiSupervised Learning Literature Survey
, 2006
"... We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a chapter ..."
Abstract

Cited by 757 (8 self)
 Add to MetaCart
We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a chapter excerpt from the author’s
doctoral thesis (Zhu, 2005). However the author plans to update the online version frequently to incorporate the latest development in the field. Please obtain the latest
version at http://www.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf
SemiSupervised Learning Using Gaussian Fields and Harmonic Functions
 IN ICML
, 2003
"... An approach to semisupervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning ..."
Abstract

Cited by 741 (15 self)
 Add to MetaCart
(Show Context)
An approach to semisupervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning
Learning with local and global consistency
 Advances in Neural Information Processing Systems 16
, 2004
"... We consider the general problem of learning from labeled and unlabeled data, which is often called semisupervised learning or transductive inference. A principled approach to semisupervised learning is to design a classifying function which is sufficiently smooth with respect to the intrinsic stru ..."
Abstract

Cited by 666 (21 self)
 Add to MetaCart
(Show Context)
We consider the general problem of learning from labeled and unlabeled data, which is often called semisupervised learning or transductive inference. A principled approach to semisupervised learning is to design a classifying function which is sufficiently smooth with respect to the intrinsic structure collectively revealed by known labeled and unlabeled points. We present a simple algorithm to obtain such a smooth solution. Our method yields encouraging experimental results on a number of classification problems and demonstrates effective use of unlabeled data. 1
A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts
 In Proceedings of the ACL
, 2004
"... Sentiment analysis seeks to identify the viewpoint(s) underlying a text span; an example application is classifying a movie review as “thumbs up” or “thumbs down”. To determine this sentiment polarity, we propose a novel machinelearning method that applies textcategorization techniques to just the ..."
Abstract

Cited by 589 (7 self)
 Add to MetaCart
Sentiment analysis seeks to identify the viewpoint(s) underlying a text span; an example application is classifying a movie review as “thumbs up” or “thumbs down”. To determine this sentiment polarity, we propose a novel machinelearning method that applies textcategorization techniques to just the subjective portions of the document. Extracting these portions can be implemented using efficient techniques for finding minimum cuts in graphs; this greatly facilitates incorporation of crosssentence contextual constraints. Publication info: Proceedings of the ACL, 2004. 1
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2006
"... We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semisupervised framework that incorporates labeled and unlabeled data in a generalpurpose learner. Some transductive graph learning al ..."
Abstract

Cited by 560 (15 self)
 Add to MetaCart
(Show Context)
We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semisupervised framework that incorporates labeled and unlabeled data in a generalpurpose learner. Some transductive graph learning algorithms and standard methods including Support Vector Machines and Regularized Least Squares can be obtained as special cases. We utilize properties of Reproducing Kernel Hilbert spaces to prove new Representer theorems that provide theoretical basis for the algorithms. As a result (in contrast to purely graphbased approaches) we obtain a natural outofsample extension to novel examples and so are able to handle both transductive and truly semisupervised settings. We present experimental evidence suggesting that our semisupervised algorithms are able to use unlabeled data effectively. Finally we have a brief discussion of unsupervised and fully supervised learning within our general framework.
On kerneltarget alignment
 Advances in Neural Information Processing Systems 14
, 2002
"... Editor: Kernel based methods are increasingly being used for data modeling because of their conceptual simplicity and outstanding performance on many tasks. However, the kernel function is often chosen using trialanderror heuristics. In this paper we address the problem of measuring the degree of ..."
Abstract

Cited by 300 (8 self)
 Add to MetaCart
Editor: Kernel based methods are increasingly being used for data modeling because of their conceptual simplicity and outstanding performance on many tasks. However, the kernel function is often chosen using trialanderror heuristics. In this paper we address the problem of measuring the degree of agreement between a kernel and a learning task. A quantitative measure of agreement is important from both a theoretical and practical point of view. We propose a quantity to capture this notion, which we call Alignment. We study its theoretical properties, and derive a series of simple algorithms for adapting a kernel to the labels and vice versa. This produces a series of novel methods for clustering and transduction, kernel combination and kernel selection. The algorithms are tested on two publicly available datasets and are shown to exhibit good performance.
Partially labeled classification with Markov Random Walks
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS
, 2001
"... To classify a large number of unlabeled examples we combine a limited number of labeled examples with a Markov random walk representation over the unlabeled examples. The random walk representation exploits any low dimensional structure in the data in a robust, probabilistic manner. We develop a ..."
Abstract

Cited by 253 (6 self)
 Add to MetaCart
To classify a large number of unlabeled examples we combine a limited number of labeled examples with a Markov random walk representation over the unlabeled examples. The random walk representation exploits any low dimensional structure in the data in a robust, probabilistic manner. We develop and compare several estimation criteria/algorithms suited to this representation. This includes in particular multiway classification with an average margin criterion which permits a closed form solution. The time scale of the random walk regularizes the representation and can be set through a marginbased criterion favoring unambiguous classification. We also extend this basic regularization by adapting time scales for individual examples. We demonstrate the approach on synthetic examples and on text classification problems.
Learning from imbalanced data
 IEEE Trans. on Knowledge and Data Engineering
, 2009
"... Abstract—With the continuous expansion of data availability in many largescale, complex, and networked systems, such as surveillance, security, Internet, and finance, it becomes critical to advance the fundamental understanding of knowledge discovery and analysis from raw data to support decisionm ..."
Abstract

Cited by 248 (6 self)
 Add to MetaCart
(Show Context)
Abstract—With the continuous expansion of data availability in many largescale, complex, and networked systems, such as surveillance, security, Internet, and finance, it becomes critical to advance the fundamental understanding of knowledge discovery and analysis from raw data to support decisionmaking processes. Although existing knowledge discovery and data engineering techniques have shown great success in many realworld applications, the problem of learning from imbalanced data (the imbalanced learning problem) is a relatively new challenge that has attracted growing attention from both academia and industry. The imbalanced learning problem is concerned with the performance of learning algorithms in the presence of underrepresented data and severe class distribution skews. Due to the inherent complex characteristics of imbalanced data sets, learning from such data requires new understandings, principles, algorithms, and tools to transform vast amounts of raw data efficiently into information and knowledge representation. In this paper, we provide a comprehensive review of the development of research in learning from imbalanced data. Our focus is to provide a critical review of the nature of the problem, the stateoftheart technologies, and the current assessment metrics used to evaluate learning performance under the imbalanced learning scenario. Furthermore, in order to stimulate future research in this field, we also highlight the major opportunities and challenges, as well as potential important research directions for learning from imbalanced data. Index Terms—Imbalanced learning, classification, sampling methods, costsensitive learning, kernelbased learning, active learning, assessment metrics. Ç
Transductive Learning via Spectral Graph Partitioning
 In ICML
, 2003
"... We present a new method for transductive learning, which can be seen as a transductive version of the k nearestneighbor classifier. ..."
Abstract

Cited by 243 (0 self)
 Add to MetaCart
(Show Context)
We present a new method for transductive learning, which can be seen as a transductive version of the k nearestneighbor classifier.
SemiSupervised Learning on Riemannian Manifolds
, 2004
"... We consider the general problem of utilizing both labeled and unlabeled data to improve classification accuracy. Under the assumption that the data lie on a submanifold in a high dimensional space, we develop an algorithmic framework to classify a partially labeled data set in a principled manner. ..."
Abstract

Cited by 197 (7 self)
 Add to MetaCart
We consider the general problem of utilizing both labeled and unlabeled data to improve classification accuracy. Under the assumption that the data lie on a submanifold in a high dimensional space, we develop an algorithmic framework to classify a partially labeled data set in a principled manner. The central idea of our approach is that classification functions are naturally defined only on the submanifold in question rather than the total ambient space. Using the LaplaceBeltrami operator one produces a basis (the Laplacian Eigenmaps) for a Hilbert space of square integrable functions on the submanifold. To recover such a basis, only unlabeled examples are required. Once such a basis is obtained, training can be performed using the labeled data set. Our algorithm models the manifold using the adjacency graph for the data and approximates the LaplaceBeltrami operator by the graph Laplacian. We provide details of the algorithm, its theoretical justification, and several practical applications for image, speech, and text classification.