Results 1  10
of
146
Clustering with Bregman Divergences
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2005
"... A wide variety of distortion functions are used for clustering, e.g., squared Euclidean distance, Mahalanobis distance and relative entropy. In this paper, we propose and analyze parametric hard and soft clustering algorithms based on a large class of distortion functions known as Bregman divergence ..."
Abstract

Cited by 309 (52 self)
 Add to MetaCart
A wide variety of distortion functions are used for clustering, e.g., squared Euclidean distance, Mahalanobis distance and relative entropy. In this paper, we propose and analyze parametric hard and soft clustering algorithms based on a large class of distortion functions known as Bregman divergences. The proposed algorithms unify centroidbased parametric clustering approaches, such as classical kmeans and informationtheoretic clustering, which arise by special choices of the Bregman divergence. The algorithms maintain the simplicity and scalability of the classical kmeans algorithm, while generalizing the basic idea to a very large class of clustering loss functions. There are two main contributions in this paper. First, we pose the hard clustering problem in terms of minimizing the loss in Bregman information, a quantity motivated by ratedistortion theory, and present an algorithm to minimize this loss. Secondly, we show an explicit bijection between Bregman divergences and exponential families. The bijection enables the development of an alternative interpretation of an ecient EM scheme for learning models involving mixtures of exponential distributions. This leads to a simple soft clustering algorithm for all Bregman divergences.
Logistic Regression, AdaBoost and Bregman Distances
, 2000
"... We give a unified account of boosting and logistic regression in which each learning problem is cast in terms of optimization of Bregman distances. The striking similarity of the two problems in this framework allows us to design and analyze algorithms for both simultaneously, and to easily adapt al ..."
Abstract

Cited by 203 (43 self)
 Add to MetaCart
We give a unified account of boosting and logistic regression in which each learning problem is cast in terms of optimization of Bregman distances. The striking similarity of the two problems in this framework allows us to design and analyze algorithms for both simultaneously, and to easily adapt algorithms designed for one problem to the other. For both problems, we give new algorithms and explain their potential advantages over existing methods. These algorithms can be divided into two types based on whether the parameters are iteratively updated sequentially (one at a time) or in parallel (all at once). We also describe a parameterized family of algorithms which interpolates smoothly between these two extremes. For all of the algorithms, we give convergence proofs using a general formalization of the auxiliaryfunction proof technique. As one of our sequentialupdate algorithms is equivalent to AdaBoost, this provides the first general proof of convergence for AdaBoost. We show that all of our algorithms generalize easily to the multiclass case, and we contrast the new algorithms with iterative scaling. We conclude with a few experimental results with synthetic data that highlight the behavior of the old and newly proposed algorithms in different settings.
Hidden Markov processes
 IEEE Trans. Inform. Theory
, 2002
"... Abstract—An overview of statistical and informationtheoretic aspects of hidden Markov processes (HMPs) is presented. An HMP is a discretetime finitestate homogeneous Markov chain observed through a discretetime memoryless invariant channel. In recent years, the work of Baum and Petrie on finite ..."
Abstract

Cited by 169 (3 self)
 Add to MetaCart
Abstract—An overview of statistical and informationtheoretic aspects of hidden Markov processes (HMPs) is presented. An HMP is a discretetime finitestate homogeneous Markov chain observed through a discretetime memoryless invariant channel. In recent years, the work of Baum and Petrie on finitestate finitealphabet HMPs was expanded to HMPs with finite as well as continuous state spaces and a general alphabet. In particular, statistical properties and ergodic theorems for relative entropy densities of HMPs were developed. Consistency and asymptotic normality of the maximumlikelihood (ML) parameter estimator were proved under some mild conditions. Similar results were established for switching autoregressive processes. These processes generalize HMPs. New algorithms were developed for estimating the state, parameter, and order of an HMP, for universal coding and classification of HMPs, and for universal decoding of hidden Markov channels. These and other related topics are reviewed in this paper. Index Terms—Baum–Petrie algorithm, entropy ergodic theorems, finitestate channels, hidden Markov models, identifiability, Kalman filter, maximumlikelihood (ML) estimation, order estimation, recursive parameter estimation, switching autoregressive processes, Ziv inequality. I.
Relative Loss Bounds for Online Density Estimation with the Exponential Family of Distributions
 MACHINE LEARNING
, 2000
"... We consider online density estimation with a parameterized density from the exponential family. The online algorithm receives one example at a time and maintains a parameter that is essentially an average of the past examples. After receiving an example the algorithm incurs a loss, which is the n ..."
Abstract

Cited by 115 (10 self)
 Add to MetaCart
We consider online density estimation with a parameterized density from the exponential family. The online algorithm receives one example at a time and maintains a parameter that is essentially an average of the past examples. After receiving an example the algorithm incurs a loss, which is the negative loglikelihood of the example with respect to the past parameter of the algorithm. An oline algorithm can choose the best parameter based on all the examples. We prove bounds on the additional total loss of the online algorithm over the total loss of the best oline parameter. These relative loss bounds hold for an arbitrary sequence of examples. The goal is to design algorithms with the best possible relative loss bounds. We use a Bregman divergence to derive and analyze each algorithm. These divergences are relative entropies between two exponential distributions. We also use our methods to prove relative loss bounds for linear regression.
A Generalized Maximum Entropy Approach to Bregman Coclustering and Matrix Approximation
 In KDD
, 2004
"... Coclustering is a powerful data mining technique with varied applications such as text clustering, microarray analysis and recommender systems. Recently, an informationtheoretic coclustering approach applicable to empirical joint probability distributions was proposed. In many situations, coclust ..."
Abstract

Cited by 97 (25 self)
 Add to MetaCart
Coclustering is a powerful data mining technique with varied applications such as text clustering, microarray analysis and recommender systems. Recently, an informationtheoretic coclustering approach applicable to empirical joint probability distributions was proposed. In many situations, coclustering of more general matrices is desired. In this paper, we present a substantially generalized coclustering framework wherein any Bregman divergence can be used in the objective function, and various conditional expectation based constraints can be considered based on the statistics that need to be preserved. Analysis of the coclustering problem leads to the minimum Bregman information principle, which generalizes the maximum entropy principle, and yields an elegant meta algorithm that is guaranteed to achieve local optimality. Our methodology yields new algorithms and also encompasses several previously known clustering and coclustering algorithms based on alternate minimization.
Boosting as Entropy Projection
, 1999
"... We consider the AdaBoost procedure for boosting weak learners. In AdaBoost, a key step is choosing a new distribution on the training examples based on the old distribution and the mistakes made by the present weak hypothesis. We show how AdaBoost 's choice of the new distribution can be seen ..."
Abstract

Cited by 58 (8 self)
 Add to MetaCart
We consider the AdaBoost procedure for boosting weak learners. In AdaBoost, a key step is choosing a new distribution on the training examples based on the old distribution and the mistakes made by the present weak hypothesis. We show how AdaBoost 's choice of the new distribution can be seen as an approximate solution to the following problem: Find a new distribution that is closest to the old distribution subject to the constraint that the new distribution is orthogonal to the vector of mistakes of the current weak hypothesis. The distance (or divergence) between distributions is measured by the relative entropy. Alternatively, we could say that AdaBoost approximately projects the distribution vector onto a hyperplane dened by the mistake vector. We show that this new view of AdaBoost as an entropy projection is dual to the usual view of AdaBoost as minimizing the normalization factors of the updated distributions.
Streaming and sublinear approximation of entropy and information distances
 In ACMSIAM Symposium on Discrete Algorithms
, 2006
"... In most algorithmic applications which compare two distributions, information theoretic distances are more natural than standard ℓp norms. In this paper we design streaming and sublinear time property testing algorithms for entropy and various information theoretic distances. Batu et al posed the pr ..."
Abstract

Cited by 54 (12 self)
 Add to MetaCart
In most algorithmic applications which compare two distributions, information theoretic distances are more natural than standard ℓp norms. In this paper we design streaming and sublinear time property testing algorithms for entropy and various information theoretic distances. Batu et al posed the problem of property testing with respect to the JensenShannon distance. We present optimal algorithms for estimating bounded, symmetric fdivergences (including the JensenShannon divergence and the Hellinger distance) between distributions in various property testing frameworks. Along the way, we close a (log n)/H gap between the upper and lower bounds for estimating entropy H, yielding an optimal algorithm over all values of the entropy. In a data stream setting (sublinear space), we give the first algorithm for estimating the entropy of a distribution. Our algorithm runs in polylogarithmic space and yields an asymptotic constant factor approximation scheme. An integral part of the algorithm is an interesting use of an F0 (the number of distinct elements in a set) estimation algorithm; we also provide other results along the space/time/approximation tradeoff curve. Our results have interesting structural implications that connect sublinear time and space constrained algorithms. The mediating model is the random order streaming model, which assumes the input is a random permutation of a multiset and was first considered by Munro and Paterson in 1980. We show that any property testing algorithm in the combined oracle model for calculating a permutation invariant functions can be simulated in the random order model in a single pass. This addresses a question raised by Feigenbaum et al regarding the relationship between property testing and stream algorithms. Further, we give a polylogspace PTAS for estimating the entropy of a one pass random order stream. This bound cannot be achieved in the combined oracle (generalized property testing) model. 1
Updating Probabilities
, 2002
"... As examples such as the Monty Hall puzzle show, applying conditioning to update a probability distribution on a "naive space", which does not take into account the protocol used, can often lead to counterintuitive results. Here we examine why. A criterion known as CAR ("coarsening at random") in t ..."
Abstract

Cited by 52 (6 self)
 Add to MetaCart
As examples such as the Monty Hall puzzle show, applying conditioning to update a probability distribution on a "naive space", which does not take into account the protocol used, can often lead to counterintuitive results. Here we examine why. A criterion known as CAR ("coarsening at random") in the statistical literature characterizes when "naive" conditioning in a naive space works. We show that the CAR condition holds rather infrequently, and we provide a procedural characterization of it, by giving a randomized algorithm that generates all and only distributions for which CAR holds. This substantially extends previous characterizations of CAR. We also consider more generalized notions of update such as Jeffrey conditioning and minimizing relative entropy (MRE). We give a generalization of the CAR condition that characterizes when Jeffrey conditioning leads to appropriate answers, and show that there exist some very simple settings in which MRE essentially never gives the right results. This generalizes and interconnects previous results obtained in the literature on CAR and MRE.
Comparing Dynamic Equilibrium Models to Data: A Bayesian Approach
"... This paper studies the properties of the Bayesian approach to estimation and comparison of dynamic equilibrium economies. Both tasks can be performed even if the models are nonnested, misspecified, and nonlinear. First, we show that Bayesian methods have a classical interpretation: asymptotically ..."
Abstract

Cited by 52 (12 self)
 Add to MetaCart
This paper studies the properties of the Bayesian approach to estimation and comparison of dynamic equilibrium economies. Both tasks can be performed even if the models are nonnested, misspecified, and nonlinear. First, we show that Bayesian methods have a classical interpretation: asymptotically, the parameter point estimates converge to their pseudotrue values, and the best model under the KullbackLeibler distance will have the highest posterior probability. Second, we illustrate the strong small sample behavior of the approach using a wellknown application: the U.S. cattle cycle. Bayesian estimates outperform maximum likelihood results, and the proposed model is easily compared with a set of BVARs.
Tracking the Best Linear Predictor
 Journal of Machine Learning Research
, 2001
"... In most online learning research the total online loss of the algorithm is compared to the total loss of the best offline predictor u from a comparison class of predictors. We call such bounds static bounds. The interesting feature of these bounds is that they hold for an arbitrary sequence of ex ..."
Abstract

Cited by 51 (10 self)
 Add to MetaCart
In most online learning research the total online loss of the algorithm is compared to the total loss of the best offline predictor u from a comparison class of predictors. We call such bounds static bounds. The interesting feature of these bounds is that they hold for an arbitrary sequence of examples. Recently some work has been done where the predictor u t at each trial t is allowed to change with time, and the total online loss of the algorithm is compared to the sum of the losses of u t at each trial plus the total "cost" for shifting to successive predictors. This is to model situations in which the examples change over time, and different predictors from the comparison class are best for different segments of the sequence of examples. We call such bounds shifting bounds. They hold for arbitrary sequences of examples and arbitrary sequences of predictors. Naturally shifting bounds are much harder to prove. The only known bounds are for the case when the comparison class consists of a sequences of experts or boolean disjunctions. In this paper we develop the methodology for lifting known static bounds to the shifting case. In particular we obtain bounds when the comparison class consists of linear neurons (linear combinations of experts). Our essential technique is to project the hypothesis of the static algorithm at the end of each trial into a suitably chosen convex region. This keeps the hypothesis of the algorithm wellbehaved and the static bounds can be converted to shifting bounds.