Results 1  10
of
113
Causal Diagrams For Empirical Research
"... The primary aim of this paper is to show how graphical models can be used as a mathematical language for integrating statistical and subjectmatter information. In particular, the paper develops a principled, nonparametric framework for causal inference, in which diagrams are queried to determine if ..."
Abstract

Cited by 172 (35 self)
 Add to MetaCart
The primary aim of this paper is to show how graphical models can be used as a mathematical language for integrating statistical and subjectmatter information. In particular, the paper develops a principled, nonparametric framework for causal inference, in which diagrams are queried to determine if the assumptions available are sufficient for identifying causal effects from nonexperimental data. If so the diagrams can be queried to produce mathematical expressions for causal effects in terms of observed distributions; otherwise, the diagrams can be queried to suggest additional observations or auxiliary experiments from which the desired inferences can be obtained. Key words: Causal inference, graph models, interventions treatment effect 1 Introduction The tools introduced in this paper are aimed at helping researchers communicate qualitative assumptions about causeeffect relationships, elucidate the ramifications of such assumptions, and derive causal inferences from a combination...
A Guide to the Literature on Learning Probabilistic Networks From Data
, 1996
"... This literature review discusses different methods under the general rubric of learning Bayesian networks from data, and includes some overlapping work on more general probabilistic networks. Connections are drawn between the statistical, neural network, and uncertainty communities, and between the ..."
Abstract

Cited by 171 (0 self)
 Add to MetaCart
This literature review discusses different methods under the general rubric of learning Bayesian networks from data, and includes some overlapping work on more general probabilistic networks. Connections are drawn between the statistical, neural network, and uncertainty communities, and between the different methodological communities, such as Bayesian, description length, and classical statistics. Basic concepts for learning and Bayesian networks are introduced and methods are then reviewed. Methods are discussed for learning parameters of a probabilistic network, for learning the structure, and for learning hidden variables. The presentation avoids formal definitions and theorems, as these are plentiful in the literature, and instead illustrates key concepts with simplified examples. Keywords Bayesian networks, graphical models, hidden variables, learning, learning structure, probabilistic networks, knowledge discovery. I. Introduction Probabilistic networks or probabilistic gra...
A characterization of Markov equivalence classes for acyclic digraphs
, 1995
"... Undirected graphs and acyclic digraphs (ADGs), as well as their mutual extension to chain graphs, are widely used to describe dependencies among variables in multivariate distributions. In particular, the likelihood functions of ADG models admit convenient recursive factorizations that often allow e ..."
Abstract

Cited by 91 (7 self)
 Add to MetaCart
Undirected graphs and acyclic digraphs (ADGs), as well as their mutual extension to chain graphs, are widely used to describe dependencies among variables in multivariate distributions. In particular, the likelihood functions of ADG models admit convenient recursive factorizations that often allow explicit maximum likelihood estimates and that are well suited to building Bayesian networks for expert systems. Whereas the undirected graph associated with a dependence model is uniquely determined, there may, however, be many ADGs that determine the same dependence ( = Markov) model. Thus, the family of all ADGs with a given set of vertices is naturally partitioned into Markovequivalence classes, each class being associated with a unique statistical model. Statistical procedures, such as model selection or model averaging, that fail to take into account these equivalence classes, may incur substantial computational or other inefficiencies. Here it is shown that each Markovequivalence class is uniquely determined by a single chain graph, the essential graph, that is itself simultaneously Markov equivalent to all ADGs in the equivalence class. Essential graphs are characterized, a polynomialtime algorithm for their construction is given, and their applications to model selection and other statistical
An Algorithm for Deciding if a Set of Observed Independencies Has a Causal Explanation
 Proc. of the Eighth Conference on Uncertainty in Artificial Intelligence
, 1992
"... In a previous paper [8] we presented an algorithm for extracting causal influences from independence information, where a causal influence was defined as the existence of a directed arc in all minimal causal models consistent with the data. In this paper we address the question of deciding whether t ..."
Abstract

Cited by 61 (1 self)
 Add to MetaCart
In a previous paper [8] we presented an algorithm for extracting causal influences from independence information, where a causal influence was defined as the existence of a directed arc in all minimal causal models consistent with the data. In this paper we address the question of deciding whether there exists a causal model that explains ALL the observed dependencies and independencies. Formally, given a list M of conditional independence statements, it is required to decide whether there exists a directed acyclic graph D that is perfectly consistent with M, namely, every statement in M, and no other, is reflected via dseparation in D. We present and analyze an effective algorithm that tests for the existence of such a dag, and produces one, if it exists. Key words: Causal modeling, graphoids, conditional independence. 1 1 Introduction Directed acyclic graphs (dags) have been widely used for modeling statistical data. Starting with the pioneering work of Sewal Wright [...
Causal Inference from Graphical Models
, 2001
"... Introduction The introduction of Bayesian networks (Pearl 1986b) and associated local computation algorithms (Lauritzen and Spiegelhalter 1988, Shenoy and Shafer 1990, Jensen, Lauritzen and Olesen 1990) has initiated a renewed interest for understanding causal concepts in connection with modelling ..."
Abstract

Cited by 56 (4 self)
 Add to MetaCart
Introduction The introduction of Bayesian networks (Pearl 1986b) and associated local computation algorithms (Lauritzen and Spiegelhalter 1988, Shenoy and Shafer 1990, Jensen, Lauritzen and Olesen 1990) has initiated a renewed interest for understanding causal concepts in connection with modelling complex stochastic systems. It has become clear that graphical models, in particular those based upon directed acyclic graphs, have natural causal interpretations and thus form a base for a language in which causal concepts can be discussed and analysed in precise terms. As a consequence there has been an explosion of writings, not primarily within mainstream statistical literature, concerned with the exploitation of this language to clarify and extend causal concepts. Among these we mention in particular books by Spirtes, Glymour and Scheines (1993), Shafer (1996), and Pearl (2000) as well as the collection of papers in Glymour and Cooper (1999). Very briefly, but fundamentally,
Graphs, Causality, And Structural Equation Models
, 1998
"... Structural equation modeling (SEM) has dominated causal analysis in the social and behavioral sciences since the 1960s. Currently, many SEM practitioners are having difficulty articulating the causal content of SEM and are seeking foundational answers. ..."
Abstract

Cited by 44 (14 self)
 Add to MetaCart
Structural equation modeling (SEM) has dominated causal analysis in the social and behavioral sciences since the 1960s. Currently, many SEM practitioners are having difficulty articulating the causal content of SEM and are seeking foundational answers.
Bayesian Model Averaging And Model Selection For Markov Equivalence Classes Of Acyclic Digraphs
 Communications in Statistics: Theory and Methods
, 1996
"... Acyclic digraphs (ADGs) are widely used to describe dependences among variables in multivariate distributions. In particular, the likelihood functions of ADG models admit convenient recursive factorizations that often allow explicit maximum likelihood estimates and that are well suited to building B ..."
Abstract

Cited by 38 (5 self)
 Add to MetaCart
Acyclic digraphs (ADGs) are widely used to describe dependences among variables in multivariate distributions. In particular, the likelihood functions of ADG models admit convenient recursive factorizations that often allow explicit maximum likelihood estimates and that are well suited to building Bayesian networks for expert systems. There may, however, be many ADGs that determine the same dependence (= Markov) model. Thus, the family of all ADGs with a given set of vertices is naturally partitioned into Markovequivalence classes, each class being associated with a unique statistical model. Statistical procedures, such as model selection or model averaging, that fail to take into account these equivalence classes, may incur substantial computational or other inefficiencies. Recent results have shown that each Markovequivalence class is uniquely determined by a single chain graph, the essential graph, that is itself Markovequivalent simultaneously to all ADGs in the equivalence clas...
Identification through Heteroskedasticity
, 2002
"... This paper develops a method of solving the identification problem that arises in simultaneous equations models. It is based on heteroskedasticity of the structural shocks. For simplicity, I consider hetereoskedasticity that can be described as a tworegime process, and show that the system is just ..."
Abstract

Cited by 38 (3 self)
 Add to MetaCart
This paper develops a method of solving the identification problem that arises in simultaneous equations models. It is based on heteroskedasticity of the structural shocks. For simplicity, I consider hetereoskedasticity that can be described as a tworegime process, and show that the system is just identified. I discuss identification under general conditions, such as more than two regimes, when common unobservable shocks exist, and situations in which the nature of the heteroskedasticity is misspecified. Finally, I use this methodology to measure the contemporaneous relationship between the returns on Argentinean, Brazilian, and Mexican sovereign bonds  a case in which standard identification methodologies do not apply.