Results 1  10
of
85
Random Algorithms for the Loop Cutset Problem
 Journal of Artificial Intelligence Research
, 1999
"... We show how to find a minimum loop cutset in a Bayesian network with high probability. Finding such a loop cutset is the first step in Pearl's method of conditioning for inference. Our random algorithm for finding a loop cutset, called RepeatedWGuessI, outputs a minimum loop cutset, after O(c ..."
Abstract

Cited by 81 (2 self)
 Add to MetaCart
We show how to find a minimum loop cutset in a Bayesian network with high probability. Finding such a loop cutset is the first step in Pearl's method of conditioning for inference. Our random algorithm for finding a loop cutset, called RepeatedWGuessI, outputs a minimum loop cutset, after O(c \Delta 6 k kn) steps, with probability at least 1 \Gamma (1 \Gamma 1 6 k ) c6 k , where c ? 1 is a constant specified by the user, k is the size of a minimum weight loop cutset, and n is the number of vertices. We also show empirically that a variant of this algorithm, called WRA, often finds a loop cutset that is closer to the minimum loop cutset than the ones found by the best deterministic algorithms known. 1
The maxmin hillclimbing bayesian network structure learning algorithm
 Machine Learning
, 2006
"... Abstract. We present a new algorithm for Bayesian network structure learning, called MaxMin HillClimbing (MMHC). The algorithm combines ideas from local learning, constraintbased, and searchandscore techniques in a principled and effective way. It first reconstructs the skeleton of a Bayesian n ..."
Abstract

Cited by 76 (7 self)
 Add to MetaCart
Abstract. We present a new algorithm for Bayesian network structure learning, called MaxMin HillClimbing (MMHC). The algorithm combines ideas from local learning, constraintbased, and searchandscore techniques in a principled and effective way. It first reconstructs the skeleton of a Bayesian network and then performs a Bayesianscoring greedy hillclimbing search to orient the edges. In our extensive empirical evaluation MMHC outperforms on average and in terms of various metrics several prototypical and stateoftheart algorithms, namely the PC, Sparse Candidate, Three Phase Dependency Analysis, Optimal Reinsertion, Greedy Equivalence Search, and Greedy Search. These are the first empirical results simultaneously comparing most of the major Bayesian network algorithms against each other. MMHC offers certain theoretical advantages, specifically over the Sparse Candidate algorithm, corroborated by our experiments. MMHC and detailed results of our study are publicly available at
Causal Inference from Graphical Models
, 2001
"... Introduction The introduction of Bayesian networks (Pearl 1986b) and associated local computation algorithms (Lauritzen and Spiegelhalter 1988, Shenoy and Shafer 1990, Jensen, Lauritzen and Olesen 1990) has initiated a renewed interest for understanding causal concepts in connection with modelling ..."
Abstract

Cited by 59 (4 self)
 Add to MetaCart
Introduction The introduction of Bayesian networks (Pearl 1986b) and associated local computation algorithms (Lauritzen and Spiegelhalter 1988, Shenoy and Shafer 1990, Jensen, Lauritzen and Olesen 1990) has initiated a renewed interest for understanding causal concepts in connection with modelling complex stochastic systems. It has become clear that graphical models, in particular those based upon directed acyclic graphs, have natural causal interpretations and thus form a base for a language in which causal concepts can be discussed and analysed in precise terms. As a consequence there has been an explosion of writings, not primarily within mainstream statistical literature, concerned with the exploitation of this language to clarify and extend causal concepts. Among these we mention in particular books by Spirtes, Glymour and Scheines (1993), Shafer (1996), and Pearl (2000) as well as the collection of papers in Glymour and Cooper (1999). Very briefly, but fundamentally,
Representing and Solving Decision Problems with Limited Information
 Management Science
, 2001
"... We introduce the notion of LImited Memory Influence Diagram (LIMID) to describe multistage decision problems where the traditional assumption of no forgetting is relaxed. This can be relevant in situations with multiple decision makers or when decisions must be prescribed under memory constraints, ..."
Abstract

Cited by 48 (3 self)
 Add to MetaCart
We introduce the notion of LImited Memory Influence Diagram (LIMID) to describe multistage decision problems where the traditional assumption of no forgetting is relaxed. This can be relevant in situations with multiple decision makers or when decisions must be prescribed under memory constraints, such as e.g. in partially observed Markov decision processes (POMDPs). We give an algorithm for improving any given strategy by local computation of single policy updates and investigate conditions for the resulting strategy to be optimal. Key words: Local computation; message passing; optimal strategies; partially observed Markov decision process, single policy updating. To appear in Management Science. y Department of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej 7G, DK9220 Aalborg, Denmark. 1 1
Graphs, Causality, And Structural Equation Models
, 1998
"... Structural equation modeling (SEM) has dominated causal analysis in the social and behavioral sciences since the 1960s. Currently, many SEM practitioners are having difficulty articulating the causal content of SEM and are seeking foundational answers. ..."
Abstract

Cited by 44 (14 self)
 Add to MetaCart
Structural equation modeling (SEM) has dominated causal analysis in the social and behavioral sciences since the 1960s. Currently, many SEM practitioners are having difficulty articulating the causal content of SEM and are seeking foundational answers.
dseparation: From theorems to algorithms
 in Uncertainty in Articial Intelligence 5
, 1990
"... Bayesian networks encode properties of a probability distribution using directed acycIic graphs (dags). queries can, in principle, be computed directly from ..."
Abstract

Cited by 40 (1 self)
 Add to MetaCart
Bayesian networks encode properties of a probability distribution using directed acycIic graphs (dags). queries can, in principle, be computed directly from
Planning Under Uncertainty in Dynamic Domains
, 1998
"... The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the o cial policies, either expressed or implied, of any other parties. ..."
Abstract

Cited by 39 (2 self)
 Add to MetaCart
The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the o cial policies, either expressed or implied, of any other parties.
Belief Networks Revisited
, 1994
"... this paper, Rumelhart presented compelling evidence that text comprehension must be a distributed process that combines both topdown and bottomup inferences. Strangely, this dual mode of inference, so characteristic of Bayesian analysis, did not match the capabilities of either the "certainty fact ..."
Abstract

Cited by 36 (4 self)
 Add to MetaCart
this paper, Rumelhart presented compelling evidence that text comprehension must be a distributed process that combines both topdown and bottomup inferences. Strangely, this dual mode of inference, so characteristic of Bayesian analysis, did not match the capabilities of either the "certainty factors" calculus or the inference networks of PROSPECTOR  the two major contenders for uncertainty management in the 1970s. I thus began to explore the possibility of achieving distributed computation in a "pure" Bayesian framework, so as not to compromise its basic capacity to combine bidirectional inferences (i.e., predictive and abductive) . Not caring much about generality at that point, I picked the simplest structure I could think of (i.e., a tree) and tried to see if anything useful can be computed by assigning each variable a simple processor, forced to communicate only with its neighbors. This gave rise to the treepropagation algorithm reported in [15] and, a year later, the KimPearl algorithm [12], which supported not only bidirectional inferences but also intercausal interactions, such as "explainingaway." These two algorithms were described in Section 2 of Fusion.
Using Causal Information and Local Measures to Learn Bayesian Networks
, 1993
"... In previous work we developed a method of learning Bayesian Network models from raw data. This method relies on the well known minimal description length (MDL) principle. The MDL principle is particularly well suited to this task as it allows us to tradeoff, in a principled way, the accuracy of the ..."
Abstract

Cited by 35 (2 self)
 Add to MetaCart
In previous work we developed a method of learning Bayesian Network models from raw data. This method relies on the well known minimal description length (MDL) principle. The MDL principle is particularly well suited to this task as it allows us to tradeoff, in a principled way, the accuracy of the learned network against its practical usefulness. In this paper we present some new results that have arisen from our work. In particular, we present a new local way of computing the description length. This allows us to make significant improvements in our search algorithm. In addition, we modify our algorithm so that it can take into account partial domain information that might be provided by a domain expert. The local computation of description length also opens the door for local refinement of an existent network. The feasibility of our approach is demonstrated by experiments involving networks of a practical size.
On the Implication Problem for Probabilistic Conditional Independency
, 2000
"... The implication problem is to test whether a given set of independencies logically implies another independency. This problem is crucial in the design of a probabilistic reasoning system. We advocate that Bayesian networks are a generalization of standard relational databases. On the contrary, it ha ..."
Abstract

Cited by 35 (30 self)
 Add to MetaCart
The implication problem is to test whether a given set of independencies logically implies another independency. This problem is crucial in the design of a probabilistic reasoning system. We advocate that Bayesian networks are a generalization of standard relational databases. On the contrary, it has been suggested that Bayesian networks are different from the relational databases because the implication problem of these two systems does not coincide for some classes of probabilistic independencies. This remark, however, does not take into consideration one important issue, namely, the solvability of the implication problem.