Results 1 
5 of
5
Causal Diagrams For Empirical Research
"... The primary aim of this paper is to show how graphical models can be used as a mathematical language for integrating statistical and subjectmatter information. In particular, the paper develops a principled, nonparametric framework for causal inference, in which diagrams are queried to determine if ..."
Abstract

Cited by 218 (37 self)
 Add to MetaCart
The primary aim of this paper is to show how graphical models can be used as a mathematical language for integrating statistical and subjectmatter information. In particular, the paper develops a principled, nonparametric framework for causal inference, in which diagrams are queried to determine if the assumptions available are sufficient for identifying causal effects from nonexperimental data. If so the diagrams can be queried to produce mathematical expressions for causal effects in terms of observed distributions; otherwise, the diagrams can be queried to suggest additional observations or auxiliary experiments from which the desired inferences can be obtained. Key words: Causal inference, graph models, interventions treatment effect 1 Introduction The tools introduced in this paper are aimed at helping researchers communicate qualitative assumptions about causeeffect relationships, elucidate the ramifications of such assumptions, and derive causal inferences from a combination...
Identifying Independencies in Causal Graphs with Feedback
 In Uncertainty in Artificial Intelligence: Proceedings of the Twelfth Conference
, 1996
"... We show that the dseparation criterion constitutes a valid test for conditional independence relationships that are induced by feedback systems involving discrete variables. 1 INTRODUCTION It is well known that the dseparation test is sound and complete relative to the independencies assumed in t ..."
Abstract

Cited by 19 (0 self)
 Add to MetaCart
We show that the dseparation criterion constitutes a valid test for conditional independence relationships that are induced by feedback systems involving discrete variables. 1 INTRODUCTION It is well known that the dseparation test is sound and complete relative to the independencies assumed in the construction of Bayesian networks [Verma and Pearl, 1988, Geiger et al., 1990]. In other words, any dseparation condition in the network corresponds to a genuine independence condition in the underlying probability distribution and, conversely, every dconnection corresponds to a dependency in at least one distribution compatible with the network. The situation with feedback systems is more complicated, primarily because the probability distributions associated with such systems do not lend themselves to a simple product decomposition. The joint distribution of feedback systems cannot be written as a product of the conditional distributions of each child variable, given its parents. Rath...
The TETRAD Project: Constraint Based Aids to Causal Model Specification
 MULTIVARIATE BEHAVIORAL RESEARCH
"... ..."
An Introduction to Causal Inference
 Causality in Crisis? University of Notre Dame
, 1997
"... developed a theory of statistical causal inference. In his presentation at the Notre Dame ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
developed a theory of statistical causal inference. In his presentation at the Notre Dame
On The Identification Of Nonparametric Structural Models
, 1997
"... In this paper we study the identifiability of nonparametric models, that is, models in which both the functional forms of the equations and the probability distributions of the disturbances remain unspecified. Identifiability in such models does not mean uniqueness of parameters but rather uniquenes ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
In this paper we study the identifiability of nonparametric models, that is, models in which both the functional forms of the equations and the probability distributions of the disturbances remain unspecified. Identifiability in such models does not mean uniqueness of parameters but rather uniqueness of the set of predictions of interest to the investigator. For example, predicting the effects of changes, interventions, and control. We provide sufficient and necessary conditions for identifying a set of causal predictions of the type: "Find the distribution of Y , assuming that X is controlled by external intervention", where Y and X are arbitrary variables of interest. Whenever identifiable, such predictions can be expressed in closed algebraic form, in terms of observed distributions. We also show how the identifying criteria can be verified qualitatively, by inspection, using the graphical representation of the structural model. When compared to standard identifiability tests of lin...