Results 1  10
of
26
Direct and Indirect Effects
, 2005
"... The direct effect of one event on another can be defined and measured by holding constant all intermediate variables between the two. Indirect effects present conceptual and practical difficulties (in nonlinear models), because they cannot be isolated by holding certain variables constant. This pape ..."
Abstract

Cited by 76 (22 self)
 Add to MetaCart
The direct effect of one event on another can be defined and measured by holding constant all intermediate variables between the two. Indirect effects present conceptual and practical difficulties (in nonlinear models), because they cannot be isolated by holding certain variables constant. This paper presents a new way of defining the effect transmitted through a restricted set of paths, without controlling variables on the remaining paths. This permits the assessment of a more natural type of direct and indirect effects, one that is applicable in both linear and nonlinear models and that has broader policyrelated interpretations. The paper establishes conditions under which such assessments can be estimated consistently from experimental and nonexperimental data, and thus extends pathanalytic techniques to nonlinear and nonparametric models.
Causal Inference from Graphical Models
, 2001
"... Introduction The introduction of Bayesian networks (Pearl 1986b) and associated local computation algorithms (Lauritzen and Spiegelhalter 1988, Shenoy and Shafer 1990, Jensen, Lauritzen and Olesen 1990) has initiated a renewed interest for understanding causal concepts in connection with modelling ..."
Abstract

Cited by 59 (4 self)
 Add to MetaCart
Introduction The introduction of Bayesian networks (Pearl 1986b) and associated local computation algorithms (Lauritzen and Spiegelhalter 1988, Shenoy and Shafer 1990, Jensen, Lauritzen and Olesen 1990) has initiated a renewed interest for understanding causal concepts in connection with modelling complex stochastic systems. It has become clear that graphical models, in particular those based upon directed acyclic graphs, have natural causal interpretations and thus form a base for a language in which causal concepts can be discussed and analysed in precise terms. As a consequence there has been an explosion of writings, not primarily within mainstream statistical literature, concerned with the exploitation of this language to clarify and extend causal concepts. Among these we mention in particular books by Spirtes, Glymour and Scheines (1993), Shafer (1996), and Pearl (2000) as well as the collection of papers in Glymour and Cooper (1999). Very briefly, but fundamentally,
Chain Graph Models and their Causal Interpretations
 B
, 2001
"... Chain graphs are a natural generalization of directed acyclic graphs (DAGs) and undirected graphs. However, the apparent simplicity of chain graphs belies the subtlety of the conditional independence hypotheses that they represent. There are a number of simple and apparently plausible, but ultim ..."
Abstract

Cited by 48 (4 self)
 Add to MetaCart
Chain graphs are a natural generalization of directed acyclic graphs (DAGs) and undirected graphs. However, the apparent simplicity of chain graphs belies the subtlety of the conditional independence hypotheses that they represent. There are a number of simple and apparently plausible, but ultimately fallacious interpretations of chain graphs that are often invoked, implicitly or explicitly. These interpretations also lead to awed methods for applying background knowledge to model selection. We present a valid interpretation by showing how the distribution corresponding to a chain graph may be generated as the equilibrium distribution of dynamic models with feedback. These dynamic interpretations lead to a simple theory of intervention, extending the theory developed for DAGs. Finally, we contrast chain graph models under this interpretation with simultaneous equation models which have traditionally been used to model feedback in econometrics. Keywords: Causal model; cha...
Graphs, Causality, And Structural Equation Models
, 1998
"... Structural equation modeling (SEM) has dominated causal analysis in the social and behavioral sciences since the 1960s. Currently, many SEM practitioners are having difficulty articulating the causal content of SEM and are seeking foundational answers. ..."
Abstract

Cited by 44 (14 self)
 Add to MetaCart
Structural equation modeling (SEM) has dominated causal analysis in the social and behavioral sciences since the 1960s. Currently, many SEM practitioners are having difficulty articulating the causal content of SEM and are seeking foundational answers.
Causal inference in statistics: An Overview
, 2009
"... This review presents empirical researcherswith recent advances in causal inference, and stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all ca ..."
Abstract

Cited by 23 (8 self)
 Add to MetaCart
This review presents empirical researcherswith recent advances in causal inference, and stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called “causal effects ” or “policy evaluation”) (2) queries about probabilities of counterfactuals, (including assessment of “regret, ” “attribution” or “causes of effects”) and (3) queries about direct and indirect effects (also known as “mediation”). Finally, the paper defines the formal and conceptual relationships between the structural and potentialoutcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both.
Identifying Independencies in Causal Graphs with Feedback
 In Uncertainty in Artificial Intelligence: Proceedings of the Twelfth Conference
, 1996
"... We show that the dseparation criterion constitutes a valid test for conditional independence relationships that are induced by feedback systems involving discrete variables. 1 INTRODUCTION It is well known that the dseparation test is sound and complete relative to the independencies assumed in t ..."
Abstract

Cited by 19 (0 self)
 Add to MetaCart
We show that the dseparation criterion constitutes a valid test for conditional independence relationships that are induced by feedback systems involving discrete variables. 1 INTRODUCTION It is well known that the dseparation test is sound and complete relative to the independencies assumed in the construction of Bayesian networks [Verma and Pearl, 1988, Geiger et al., 1990]. In other words, any dseparation condition in the network corresponds to a genuine independence condition in the underlying probability distribution and, conversely, every dconnection corresponds to a dependency in at least one distribution compatible with the network. The situation with feedback systems is more complicated, primarily because the probability distributions associated with such systems do not lend themselves to a simple product decomposition. The joint distribution of feedback systems cannot be written as a product of the conditional distributions of each child variable, given its parents. Rath...
Instrumentality Tests Revisited
 In Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence
, 2001
"... An instrument is a random variable that is uncorrelated with certain (unobserved) error terms and, thus, allows the identification of structural parameters in linear models. In nonlinear models, instrumental variables are useful for deriving bounds on causal effects. Few years ago, Pearl introduced ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
An instrument is a random variable that is uncorrelated with certain (unobserved) error terms and, thus, allows the identification of structural parameters in linear models. In nonlinear models, instrumental variables are useful for deriving bounds on causal effects. Few years ago, Pearl introduced a necessary test for instruments which permits researchers to identify variables that could not serve as instruments. In this paper, we extend Pearl's result in several directions. In particular, we answer in the armative an open conjecture about the nontestability of instruments in models with unrestricted variables, and we devise new tests for models with discrete and continuous variables.
Alcohol advertising and advertising bans: a survey of research methods, results, and policy implications
 In Advances in Applied Microeconomics: Advertising and Differentiated Products; Baye, M.R
"... This chapter surveys the literatures on advertising bans and alcohol consumption or abuse, and advertising expenditures and alcohol consumption. Studies of statelevel bans of billboards are examined as well as studies of international bans that cover broadcasting media. For expenditures, the survey ..."
Abstract

Cited by 8 (7 self)
 Add to MetaCart
This chapter surveys the literatures on advertising bans and alcohol consumption or abuse, and advertising expenditures and alcohol consumption. Studies of statelevel bans of billboards are examined as well as studies of international bans that cover broadcasting media. For expenditures, the survey concentrates on econometric methods and the existence of an industry advertisingsales response function. Selected results from surveyresearch studies of advertising and youth alcohol behaviors also are discussed. The chapter concludes that advertising bans do not reduce alcohol consumption or abuse; advertising expenditures do not have a marketwide expansion effect; and surveyresearch studies of youth behaviors are seriously incomplete as a basis for public policy. Results of the survey are applied to the Supreme Court’s Central Hudson test for constitutionality of restrictions on commercial speech.
Causal Inference in the Health Sciences: A Conceptual Introduction
 Health Services and Outcomes Research Methodology
, 2001
"... This paper provides a conceptual introduction to causal inference, aimed to assist health services researchers benefit from recent advances in this area. The paper stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivari ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
This paper provides a conceptual introduction to causal inference, aimed to assist health services researchers benefit from recent advances in this area. The paper stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underlie all causal inferences, the languages used in formulating those assumptions, and the conditional nature of causal claims inferred from nonexperimental studies. These emphases are illustrated through a brief survey of recent results, including the control of confounding, corrections for noncompliance, and a symbiosis between counterfactual and graphical methods of analysis.