Results 1  10
of
63
Configuration Structures
 Proceedings of 10th Annual IEEE Symposium on Logic in Computer Science. IEEE Computer
, 1995
"... ..."
Gates accept concurrent behavior
 In Proc. 34th Ann. IEEE Symp. on Foundations of Comp. Sci
, 1993
"... We represent concurrent processes as Boolean propositions or gates, cast in the role of acceptors of concurrent behavior. This properly extends other mainstream representations of concurrent behavior such as event structures, yet is defined more simply. It admits an intrinsic notion of duality that ..."
Abstract

Cited by 37 (16 self)
 Add to MetaCart
(Show Context)
We represent concurrent processes as Boolean propositions or gates, cast in the role of acceptors of concurrent behavior. This properly extends other mainstream representations of concurrent behavior such as event structures, yet is defined more simply. It admits an intrinsic notion of duality that permits processes to be viewed as either schedules or automata. Its algebraic structure is essentially that of linear logic, with its morphisms being consequencepreserving renamings of propositions, and with its operations forming the core of a natural concurrent programming language. 1
Chu spaces and their interpretation as concurrent objects
, 2005
"... A Chu space is a binary relation =  from a set A to an antiset X defined as a set which transforms via converse functions. Chu spaces admit a great many interpretations by virtue of realizing all small concrete categories and most large ones arising in mathematical and computational practice. Of pa ..."
Abstract

Cited by 34 (0 self)
 Add to MetaCart
A Chu space is a binary relation =  from a set A to an antiset X defined as a set which transforms via converse functions. Chu spaces admit a great many interpretations by virtue of realizing all small concrete categories and most large ones arising in mathematical and computational practice. Of particular interest for computer science is their interpretation as computational processes, which takes A to be a schedule of events distributed in time, X to be an automaton of states forming an information system in the sense of Scott, and the pairs (a, x) in the =  relation to be the individual transcriptions of the making of history. The traditional homogeneous binary relations of transition on X and precedence on A are recovered as respectively the right and left residuals of the heterogeneous binary relation =  with itself. The natural algebra of Chu spaces is that of linear logic, made a process algebra by the process interpretation.
Higher Dimensional Automata Revisited
 MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE
, 2000
"... ..."
The Duality of Time and Information
 In Proc. of CONCUR'92, LNCS 630
, 1992
"... The states of a computing system bear information and change time, while its events bear time and change information. We develop a primitive algebraic model of this duality of time and information for rigid local computation, or straightline code, in the absence of choice and concurrency, where time ..."
Abstract

Cited by 18 (7 self)
 Add to MetaCart
(Show Context)
The states of a computing system bear information and change time, while its events bear time and change information. We develop a primitive algebraic model of this duality of time and information for rigid local computation, or straightline code, in the absence of choice and concurrency, where time and information are linearly ordered. This shows the duality of computation to be more fundamental than the logic of computation for which choice is disjunction and concurrency conjunction. To accommodate flexible distributed computing systems we then bring in choice and concurrency and pass to partially ordered time and information, the formal basis for this extension being BirkhoffStone duality. A degree of freedom in how this is done permits a perfectly symmetric logic of computation amounting to Girard's full linear logic, which we view as the natural logic of computation when equal importance is attached to choice and concurrency. We conclude with an assessment of the prospects for ex...
Chu Spaces as a Semantic Bridge Between Linear Logic and Mathematics
 Theoretical Computer Science
, 1998
"... The motivating role of linear logic is as a "logic behind logic." We propose a sibling role for it as a logic of transformational mathematics via the selfdual category of Chu spaces, a generalization of topological spaces. These create a bridge between linear logic and mathematics by soun ..."
Abstract

Cited by 16 (2 self)
 Add to MetaCart
The motivating role of linear logic is as a "logic behind logic." We propose a sibling role for it as a logic of transformational mathematics via the selfdual category of Chu spaces, a generalization of topological spaces. These create a bridge between linear logic and mathematics by soundly interpreting linear logic while fully and concretely embedding a comprehensive range of concrete categories of mathematics. Our main goal is to treat each end of this bridge in expository detail. In addition we introduce the dialectic lambdacalculus, and show that dinaturality semantics is not fully complete for the Chu interpretation of linear logic. 1 Introduction Linear logic was introduced by J.Y. Girard as a "logic behind logic." It separates logical reasoning into a core linear part in which formulas are merely moved around, and an auxiliary nonlinear part in which formulas may be deleted and copied. The core, multiplicative linear logic (MLL), is a substructural logic whose basic connect...
Transforming Data by Calculation
 IN GTTSE’07, VOLUME 5235 OF LNCS
, 2008
"... This paper addresses the foundations of datamodel transformation. A catalog of data mappings is presented which includes abstraction and representation relations and associated constraints. These are justified in an algebraic style via the pointfreetransform, a technique whereby predicates are lif ..."
Abstract

Cited by 16 (7 self)
 Add to MetaCart
(Show Context)
This paper addresses the foundations of datamodel transformation. A catalog of data mappings is presented which includes abstraction and representation relations and associated constraints. These are justified in an algebraic style via the pointfreetransform, a technique whereby predicates are lifted to binary relation terms (of the algebra of programming) in a twolevel style encompassing both data and operations. This approach to data calculation, which also includes transformation of recursive data models into “flat ” database schemes, is offered as alternative to standard database design from abstract models. The calculus is also used to establish a link between the proposed transformational style and bidirectional lenses developed in the context of the classical viewupdate problem.
Relative Expressive Power of Navigational Querying on Graphs
"... Motivated by both established and new applications, we study navigational query languages for graphs (binary relations). The simplest language has only the two operators union and composition, together with the identity relation. We make more powerful languages by adding any of the following operato ..."
Abstract

Cited by 15 (3 self)
 Add to MetaCart
(Show Context)
Motivated by both established and new applications, we study navigational query languages for graphs (binary relations). The simplest language has only the two operators union and composition, together with the identity relation. We make more powerful languages by adding any of the following operators: intersection; set difference; projection; coprojection; converse; transitive closure; and the diversity relation. All these operators map binary relations to binary relations. We compare the expressive power of all resulting languages. We do this not only for general path queries (queries where the result may be any binary relation) but also for boolean or yes/no queries (expressed by the nonemptiness of an expression). For both cases, we present the complete Hasse diagram of relative expressiveness. In particular, the Hasse diagram for boolean queries contains nontrivial separations and a few surprising collapses.
Extended Static Checking by Calculation using the Pointfree Transform
 Proc. LerNet ALFA Summer School Conf
, 2008
"... Abstract. The pointfree transform offers to the predicate calculus what the Laplace transform offers to the differential/integral calculus: the possibility of changing the underlying mathematical space so as to enable agile algebraic calculation. This paper addresses the foundations of the transfo ..."
Abstract

Cited by 14 (6 self)
 Add to MetaCart
(Show Context)
Abstract. The pointfree transform offers to the predicate calculus what the Laplace transform offers to the differential/integral calculus: the possibility of changing the underlying mathematical space so as to enable agile algebraic calculation. This paper addresses the foundations of the transform and its application to a calculational approach to extended static checking (ESC) in the context of abstract modeling. In particular, a calculus is given whose rules help in breaking the complexity of the proof obligations involved in static checking arguments. The close connection between such calculus and that of weakest preconditions makes it possible to use the latter in ESC proof obligation discharge, where pointfree notation is again used, this time to calculate with invariant properties to be maintained. A connection with the “everything is a relation ” lemma of Alloy is established, showing how close to each other the pointfree and Alloy notations are. The main advantage of this connection is that of complementing penandpaper pointfree models.