Results 1  10
of
20
Simulating Normalized Constants: From Importance Sampling to Bridge Sampling to Path Sampling
 Statistical Science, 13, 163–185. COMPARISON OF METHODS FOR COMPUTING BAYES FACTORS 435
, 1998
"... Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at ..."
Abstract

Cited by 146 (4 self)
 Add to MetaCart
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
The maxmin hillclimbing bayesian network structure learning algorithm
 Machine Learning
, 2006
"... Abstract. We present a new algorithm for Bayesian network structure learning, called MaxMin HillClimbing (MMHC). The algorithm combines ideas from local learning, constraintbased, and searchandscore techniques in a principled and effective way. It first reconstructs the skeleton of a Bayesian n ..."
Abstract

Cited by 76 (7 self)
 Add to MetaCart
Abstract. We present a new algorithm for Bayesian network structure learning, called MaxMin HillClimbing (MMHC). The algorithm combines ideas from local learning, constraintbased, and searchandscore techniques in a principled and effective way. It first reconstructs the skeleton of a Bayesian network and then performs a Bayesianscoring greedy hillclimbing search to orient the edges. In our extensive empirical evaluation MMHC outperforms on average and in terms of various metrics several prototypical and stateoftheart algorithms, namely the PC, Sparse Candidate, Three Phase Dependency Analysis, Optimal Reinsertion, Greedy Equivalence Search, and Greedy Search. These are the first empirical results simultaneously comparing most of the major Bayesian network algorithms against each other. MMHC offers certain theoretical advantages, specifically over the Sparse Candidate algorithm, corroborated by our experiments. MMHC and detailed results of our study are publicly available at
Graphical Models for Genetic Analyses
 STATISTTICAL SCIENCE
, 2003
"... This paper introduces graphical models as a natural environment in which to formulate and solve problems in genetics and related areas. Particular emphasis is given to the relationships among various local computation algorithms which have been developed within the hitherto mostly separate areas o ..."
Abstract

Cited by 28 (0 self)
 Add to MetaCart
This paper introduces graphical models as a natural environment in which to formulate and solve problems in genetics and related areas. Particular emphasis is given to the relationships among various local computation algorithms which have been developed within the hitherto mostly separate areas of graphical models and genetics. The potential of graphical models is explored and illustrated through a number of example applications where the genetic element is substantial or dominating.
Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees
"... We explore the task of constructing a parallel Gibbs sampler, to both improve mixing and the exploration of high likelihood states. Recent work in parallel Gibbs sampling has focused on update schedules which do not guarantee convergence to the intended stationary distribution. In this work, we prop ..."
Abstract

Cited by 24 (5 self)
 Add to MetaCart
We explore the task of constructing a parallel Gibbs sampler, to both improve mixing and the exploration of high likelihood states. Recent work in parallel Gibbs sampling has focused on update schedules which do not guarantee convergence to the intended stationary distribution. In this work, we propose two methods to construct parallel Gibbs samplers guaranteed to draw from the targeted distribution. The first method, called the Chromatic sampler, uses graph coloring to construct a direct parallelization of the classic sequential scan Gibbs sampler. In the case of 2colorable models we relate the Chromatic sampler to the Synchronous Gibbs sampler (which draws all variables simultaneously in parallel), and reveal new ergodic properties of Synchronous Gibbs chains. Our second method, the Splash sampler, is a complementary strategy which can be used when the variables are tightly coupled. This constructs and samples multiple blocks in parallel, using a novel locking protocol and an iterative junction tree generation algorithm. We further improve the Splash sampler through adaptive tree construction. We demonstrate the benefits of our two sampling algorithms on large synthetic and realworld models using a 32 processor multicore system. 1
Warp bridge sampling
 J. Comp. Graph. Statist
, 2002
"... Bridge sampling, a general formulation of the acceptance ratio method in physics for computing freeenergy difference, is an effective Monte Carlo method for computing normalizingconstantsof probabilitymodels. The method was originallyproposedfor cases where the probabilitymodels have overlappingsup ..."
Abstract

Cited by 16 (1 self)
 Add to MetaCart
Bridge sampling, a general formulation of the acceptance ratio method in physics for computing freeenergy difference, is an effective Monte Carlo method for computing normalizingconstantsof probabilitymodels. The method was originallyproposedfor cases where the probabilitymodels have overlappingsupport. Voter proposed the idea of shifting physical systems before applying the acceptance ratio method to calculate freeenergy differencesbetween systems that are highlyseparatedin a con � guration space.The purpose of this article is to push Voter’s idea further by applying more general transformations, including stochastic transformations resulting from mixing over transformation groups, to the underlying variables before performing bridge sampling. We term such methods warp bridgesampling to highlightthe fact that in addition to location shifting (i.e., centering)one can further reduce the difference/distance between two densities by warping their shapes without changing the normalizing constants. Real databased empirical studies using the fullinformationitem factor modeland a nonlinearmixed model are providedto demonstrate the potentially substantial gains in Monte Carlo ef � ciency by going beyond centering and by using ef � cient bridge sampling estimators. Our general method is also applicable to a couple of recent proposals for computing marginal likelihoods and Bayes factors because these methods turn out to be covered by the general bridge sampling framework.
Multilocus linkage analysis by blocked Gibbs sampling
 Statistics and Computing
, 2000
"... The problem of multilocus linkage analysis is expressed as a graphical model, making explicit a previously implicit connection, and recent developments in the field are described in this context. A novel application of blocked Gibbs sampling for Bayesian networks is developed to generate inheritance ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
The problem of multilocus linkage analysis is expressed as a graphical model, making explicit a previously implicit connection, and recent developments in the field are described in this context. A novel application of blocked Gibbs sampling for Bayesian networks is developed to generate inheritance matrices from an irreducible Markov chain. This is used as the basis for reconstruction of historical meiotic states and approximate calculation of the likelihood function for the location of an unmapped genetic trait. We believe this to be the only approach that currently makes fully informative multilocus linkage analysis possible on large extended pedigrees.
Controlled Generation of Hard and Easy Bayesian Networks: Impact on Maximal Clique Tree in Tree Clustering
 Artificial Intelligence
, 2006
"... This article presents and analyzes algorithms that systematically generate random Bayesian networks of varying difficulty levels, with respect to inference using tree clustering. The results are relevant to research on efficient Bayesian network inference, such as computing a most probable explanati ..."
Abstract

Cited by 8 (7 self)
 Add to MetaCart
This article presents and analyzes algorithms that systematically generate random Bayesian networks of varying difficulty levels, with respect to inference using tree clustering. The results are relevant to research on efficient Bayesian network inference, such as computing a most probable explanation or belief updating, since they allow controlled experimentation to determine the impact of improvements to inference algorithms. The results are also relevant to research on machine learning of Bayesian networks, since they support controlled generation of a large number of data sets at a given difficulty level. Our generation algorithms, called BPART and MPART, support controlled but random construction of bipartite and multipartite Bayesian networks. The Bayesian network parameters that we vary are the total number of nodes, degree of connectivity, the ratio of the number of nonroot nodes to the number of root nodes, regularity of the underlying graph, and characteristics of the conditional probability tables. The main dependent parameter is the size of the maximal clique as generated by tree clustering. This article presents extensive empirical analysis using the H��� � tree clustering approach as well as theoretical analysis related to the random generation of Bayesian networks using BPART and MPART. 1
Problems with the Determination of the Noncommunicating Classes for MCMC Applications in Pedigree Analysis
, 1998
"... Exact calculations for probabilities on complex pedigrees are computationally intensive and very often infeasible. Markov chain Monte Carlo methods are frequently used to approximate probabilities and likelihoods of interest. However, when a locus with more than two alleles is considered, the ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
Exact calculations for probabilities on complex pedigrees are computationally intensive and very often infeasible. Markov chain Monte Carlo methods are frequently used to approximate probabilities and likelihoods of interest. However, when a locus with more than two alleles is considered, the underlying Markov chain is not guaranteed to be irreducible and the results of such analyses are unreliable. A method for finding the noncommunicating classes of the Markov chain would be very useful in designing algorithms that can jump between these classes. In this paper we will examine some existing work on this problem and point out its limitations. We will also 1 comment on the difficulty of developing a useful algorithm. Keywords: Complex pedigrees, reducibility, islands, Gibbs sampling 2 1 Introduction The computation of probabilities on pedigrees is an essential component in any analysis of genetic data on groups of related individuals. Such computations are relevant ...
Haplotype Inference in Complex Pedigrees
"... Abstract. Despite the desirable information contained in complex pedigree datasets, analysis methods struggle to efficiently process these datasets. The attractiveness of pedigree data sets is their power for detecting rare variants, particularly in comparison with studies of unrelated individuals. ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
Abstract. Despite the desirable information contained in complex pedigree datasets, analysis methods struggle to efficiently process these datasets. The attractiveness of pedigree data sets is their power for detecting rare variants, particularly in comparison with studies of unrelated individuals. In addition, rather than assuming individuals in a study are unrelated, knowledge of their relationships can avoid spurious results due to confounding population structure effects. However, a major challenge for the applicability of pedigree methods is the ability handle complex pedigrees, having multiple founding lineages, inbreeding, and halfsibling relationships. A key ingredient in association studies is imputation and inference of haplotypes from genotype data. Existing haplotype inference methods either do not efficiently scales to complex pedigrees or their accuracy is limited. In this paper, we present algorithms for efficient haplotype inference and imputation in complex pedigrees. Our method, PhyloPed, leverages the perfect phylogeny model, resulting in an efficient method with high accuracy. In addition, PhyloPed effectively combines the founder haplotype information from different lineages and is immune to inaccuracies in prior information about the founders.
Inference In Bayesian Networks Using Nested Junction Trees
 IN M. JORDON (ED.), LEARNING IN GRAPHICAL MODELS
, 1998
"... The efficiency of inference in both the Hugin and the ShaferShenoy architectures can be improved by exploiting the independence relations induced by the incoming messages of a clique. That is, the message to be sent from a clique can be computed via a factorization of the clique potential in the for ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
The efficiency of inference in both the Hugin and the ShaferShenoy architectures can be improved by exploiting the independence relations induced by the incoming messages of a clique. That is, the message to be sent from a clique can be computed via a factorization of the clique potential in the form of a junction tree. In this paper we show that by exploiting such nested junction trees in the computation of messages both space and time costs of the conventional propagation methods may be reduced. The paper presents a structured way of exploiting the nested junction trees technique to achieve such reductions. The usefulness of the method is emphasized through a thorough empirical evaluation involving ten large realworld Bayesian networks and both the Hugin and the ShaferShenoy inference algorithms.