Results 1  10
of
59
The Foundation of a Generic Theorem Prover
 Journal of Automated Reasoning
, 1989
"... Isabelle [28, 30] is an interactive theorem prover that supports a variety of logics. It represents rules as propositions (not as functions) and builds proofs by combining rules. These operations constitute a metalogic (or `logical framework') in which the objectlogics are formalized. Isabelle is ..."
Abstract

Cited by 422 (47 self)
 Add to MetaCart
Isabelle [28, 30] is an interactive theorem prover that supports a variety of logics. It represents rules as propositions (not as functions) and builds proofs by combining rules. These operations constitute a metalogic (or `logical framework') in which the objectlogics are formalized. Isabelle is now based on higherorder logic  a precise and wellunderstood foundation. Examples illustrate use of this metalogic to formalize logics and proofs. Axioms for firstorder logic are shown sound and complete. Backwards proof is formalized by metareasoning about objectlevel entailment. Higherorder logic has several practical advantages over other metalogics. Many proof techniques are known, such as Huet's higherorder unification procedure. Key words: higherorder logic, higherorder unification, Isabelle, LCF, logical frameworks, metareasoning, natural deduction Contents 1 History and overview 2 2 The metalogic M 4 2.1 Syntax of the metalogic ......................... 4 2.2 ...
Uniform proofs as a foundation for logic programming
 ANNALS OF PURE AND APPLIED LOGIC
, 1991
"... A prooftheoretic characterization of logical languages that form suitable bases for Prologlike programming languages is provided. This characterization is based on the principle that the declarative meaning of a logic program, provided by provability in a logical system, should coincide with its ..."
Abstract

Cited by 374 (108 self)
 Add to MetaCart
A prooftheoretic characterization of logical languages that form suitable bases for Prologlike programming languages is provided. This characterization is based on the principle that the declarative meaning of a logic program, provided by provability in a logical system, should coincide with its operational meaning, provided by interpreting logical connectives as simple and fixed search instructions. The operational semantics is formalized by the identification of a class of cutfree sequent proofs called uniform proofs. A uniform proof is one that can be found by a goaldirected search that respects the interpretation of the logical connectives as search instructions. The concept of a uniform proof is used to define the notion of an abstract logic programming language, and it is shown that firstorder and higherorder Horn clauses with classical provability are examples of such a language. Horn clauses are then generalized to hereditary Harrop formulas and it is shown that firstorder and higherorder versions of this new class of formulas are also abstract logic programming languages if the inference rules are those of either intuitionistic or minimal logic. The programming language significance of the various generalizations to firstorder Horn clauses is briefly discussed.
Logic Programming in a Fragment of Intuitionistic Linear Logic
"... When logic programming is based on the proof theory of intuitionistic logic, it is natural to allow implications in goals and in the bodies of clauses. Attempting to prove a goal of the form D ⊃ G from the context (set of formulas) Γ leads to an attempt to prove the goal G in the extended context Γ ..."
Abstract

Cited by 306 (40 self)
 Add to MetaCart
When logic programming is based on the proof theory of intuitionistic logic, it is natural to allow implications in goals and in the bodies of clauses. Attempting to prove a goal of the form D ⊃ G from the context (set of formulas) Γ leads to an attempt to prove the goal G in the extended context Γ ∪ {D}. Thus during the bottomup search for a cutfree proof contexts, represented as the lefthand side of intuitionistic sequents, grow as stacks. While such an intuitionistic notion of context provides for elegant specifications of many computations, contexts can be made more expressive and flexible if they are based on linear logic. After presenting two equivalent formulations of a fragment of linear logic, we show that the fragment has a goaldirected interpretation, thereby partially justifying calling it a logic programming language. Logic programs based on the intuitionistic theory of hereditary Harrop formulas can be modularly embedded into this linear logic setting. Programming examples taken from theorem proving, natural language parsing, and data base programming are presented: each example requires a linear, rather than intuitionistic, notion of context to be modeled adequately. An interpreter for this logic programming language must address the problem of splitting contexts; that is, when attempting to prove a multiplicative conjunction (tensor), say G1 ⊗ G2, from the context ∆, the latter must be split into disjoint contexts ∆1 and ∆2 for which G1 follows from ∆1 and G2 follows from ∆2. Since there is an exponential number of such splits, it is important to delay the choice of a split as much as possible. A mechanism for the lazy splitting of contexts is presented based on viewing proof search as a process that takes a context, consumes part of it, and returns the rest (to be consumed elsewhere). In addition, we use collections of Kripke interpretations indexed by a commutative monoid to provide models for this logic programming language and show that logic programs admit a canonical model.
A logic programming language with lambdaabstraction, function variables, and simple unification
 Extensions of Logic Programming. Springer Lecture Notes in Artificial Intelligence
, 1990
"... A meta programming language must be able to represent and manipulate such syntactic structures as programs, formulas, types, and proofs. A common characteristic of all these structures is that they involve notions of abstractions, scope, bound and free variables, substitution instances, and equality ..."
Abstract

Cited by 291 (24 self)
 Add to MetaCart
A meta programming language must be able to represent and manipulate such syntactic structures as programs, formulas, types, and proofs. A common characteristic of all these structures is that they involve notions of abstractions, scope, bound and free variables, substitution instances, and equality up to alphabetic changes of bound variables.
A Linear Logical Framework
, 1996
"... We present the linear type theory LLF as the forAppeared in the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science  LICS'96 (E. Clarke editor), pp. 264275, New Brunswick, NJ, July 2730 1996. mal basis for a conservative extension of the LF logical framework. LLF c ..."
Abstract

Cited by 217 (44 self)
 Add to MetaCart
We present the linear type theory LLF as the forAppeared in the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science  LICS'96 (E. Clarke editor), pp. 264275, New Brunswick, NJ, July 2730 1996. mal basis for a conservative extension of the LF logical framework. LLF combines the expressive power of dependent types with linear logic to permit the natural and concise representation of a whole new class of deductive systems, namely those dealing with state. As an example we encode a version of MiniML with references including its type system, its operational semantics, and a proof of type preservation. Another example is the encoding of a sequent calculus for classical linear logic and its cut elimination theorem. LLF can also be given an operational interpretation as a logic programming language under which the representations above can be used for type inference, evaluation and cutelimination. 1 Introduction A logical framework is a formal system desig...
Higherorder logic programming
 HANDBOOK OF LOGIC IN AI AND LOGIC PROGRAMMING, VOLUME 5: LOGIC PROGRAMMING. OXFORD (1998
"... ..."
Unification under a mixed prefix
 Journal of Symbolic Computation
, 1992
"... Unification problems are identified with conjunctions of equations between simply typed λterms where free variables in the equations can be universally or existentially quantified. Two schemes for simplifying quantifier alternation, called Skolemization and raising (a dual of Skolemization), are pr ..."
Abstract

Cited by 124 (13 self)
 Add to MetaCart
Unification problems are identified with conjunctions of equations between simply typed λterms where free variables in the equations can be universally or existentially quantified. Two schemes for simplifying quantifier alternation, called Skolemization and raising (a dual of Skolemization), are presented. In this setting where variables of functional type can be quantified and not all types contain closed terms, the naive generalization of firstorder Skolemization has several technical problems that are addressed. The method of searching for preunifiers described by Huet is easily extended to the mixed prefix setting, although solving flexibleflexible unification problems is undecidable since types may be empty. Unification problems may have numerous incomparable unifiers. Occasionally, unifiers share common factors and several of these are presented. Various optimizations on the general unification search problem are as discussed. 1.
Reasoning with higherorder abstract syntax in a logical framework
 ACM Transactions on Computational Logic
, 2002
"... Logical frameworks based on intuitionistic or linear logics with highertype quantification have been successfully used to give highlevel, modular, and formal specifications of many important judgments in the area of programming languages and inference systems. Given such specifications, it is natu ..."
Abstract

Cited by 90 (23 self)
 Add to MetaCart
Logical frameworks based on intuitionistic or linear logics with highertype quantification have been successfully used to give highlevel, modular, and formal specifications of many important judgments in the area of programming languages and inference systems. Given such specifications, it is natural to consider proving properties about the specified systems in the framework: for example, given the specification of evaluation for a functional programming language, prove that the language is deterministic or that evaluation preserves types. One challenge in developing a framework for such reasoning is that higherorder abstract syntax (HOAS), an elegant and declarative treatment of objectlevel abstraction and substitution, is difficult to treat in proofs involving induction. In this paper, we present a metalogic that can be used to reason about judgments coded using HOAS; this metalogic is an extension of a simple intuitionistic logic that admits higherorder quantification over simply typed λterms (key ingredients for HOAS) as well as induction and a notion of definition. The latter concept of definition is a prooftheoretic device that allows certain theories to be treated as “closed ” or as defining fixed points. We explore the difficulties of formal metatheoretic analysis of HOAS encodings by considering encodings of intuitionistic and linear logics, and formally derive the admissibility of cut for important subsets
Using Typed Lambda Calculus to Implement Formal Systems on a Machine
 Journal of Automated Reasoning
, 1992
"... this paper and the LF. In particular the idea of having an operator T : Prop ! Type appears already in De Bruijn's earlier work, as does the idea of having several judgements. The paper [24] describes the basic features of the LF. In this paper we are going to provide a broader illustration of its a ..."
Abstract

Cited by 83 (14 self)
 Add to MetaCart
this paper and the LF. In particular the idea of having an operator T : Prop ! Type appears already in De Bruijn's earlier work, as does the idea of having several judgements. The paper [24] describes the basic features of the LF. In this paper we are going to provide a broader illustration of its applicability and discuss to what extent it is successful. The analysis (of the formal presentation) of a system carried out through encoding often illuminates the system itself. This paper will also deal with this phenomenon.
Elf: A Language for Logic Definition and Verified Metaprogramming
 In Fourth Annual Symposium on Logic in Computer Science
, 1989
"... We describe Elf, a metalanguage for proof manipulation environments that are independent of any particular logical system. Elf is intended for metaprograms such as theorem provers, proof transformers, or type inference programs for programming languages with complex type systems. Elf unifies logic ..."
Abstract

Cited by 77 (8 self)
 Add to MetaCart
We describe Elf, a metalanguage for proof manipulation environments that are independent of any particular logical system. Elf is intended for metaprograms such as theorem provers, proof transformers, or type inference programs for programming languages with complex type systems. Elf unifies logic definition (in the style of LF, the Edinburgh Logical Framework) with logic programming (in the style of Prolog). It achieves this unification by giving types an operational interpretation, much the same way that Prolog gives certain formulas (Hornclauses) an operational interpretation. Novel features of Elf include: (1) the Elf search process automatically constructs terms that can represent objectlogic proofs, and thus a program need not construct them explicitly, (2) the partial correctness of metaprograms with respect to a given logic can be expressed and proved in Elf itself, and (3) Elf exploits Elliott's unification algorithm for a calculus with dependent types. This research was...