Results 1  10
of
43
A Linear Logical Framework
, 1996
"... We present the linear type theory LLF as the forAppeared in the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science  LICS'96 (E. Clarke editor), pp. 264275, New Brunswick, NJ, July 2730 1996. mal basis for a conservative extension of the LF logical framework. LLF c ..."
Abstract

Cited by 217 (44 self)
 Add to MetaCart
We present the linear type theory LLF as the forAppeared in the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science  LICS'96 (E. Clarke editor), pp. 264275, New Brunswick, NJ, July 2730 1996. mal basis for a conservative extension of the LF logical framework. LLF combines the expressive power of dependent types with linear logic to permit the natural and concise representation of a whole new class of deductive systems, namely those dealing with state. As an example we encode a version of MiniML with references including its type system, its operational semantics, and a proof of type preservation. Another example is the encoding of a sequent calculus for classical linear logic and its cut elimination theorem. LLF can also be given an operational interpretation as a logic programming language under which the representations above can be used for type inference, evaluation and cutelimination. 1 Introduction A logical framework is a formal system desig...
Rewriting Logic as a Logical and Semantic Framework
, 1993
"... Rewriting logic [72] is proposed as a logical framework in which other logics can be represented, and as a semantic framework for the specification of languages and systems. Using concepts from the theory of general logics [70], representations of an object logic L in a framework logic F are und ..."
Abstract

Cited by 147 (52 self)
 Add to MetaCart
Rewriting logic [72] is proposed as a logical framework in which other logics can be represented, and as a semantic framework for the specification of languages and systems. Using concepts from the theory of general logics [70], representations of an object logic L in a framework logic F are understood as mappings L ! F that translate one logic into the other in a conservative way. The ease with which such maps can be defined for a number of quite different logics of interest, including equational logic, Horn logic with equality, linear logic, logics with quantifiers, and any sequent calculus presentation of a logic for a very general notion of "sequent," is discussed in detail. Using the fact that rewriting logic is reflective, it is often possible to reify inside rewriting logic itself a representation map L ! RWLogic for the finitely presentable theories of L. Such a reification takes the form of a map between the abstract data types representing the finitary theories of...
Reasoning with higherorder abstract syntax in a logical framework
 ACM Transactions on Computational Logic
, 2002
"... Logical frameworks based on intuitionistic or linear logics with highertype quantification have been successfully used to give highlevel, modular, and formal specifications of many important judgments in the area of programming languages and inference systems. Given such specifications, it is natu ..."
Abstract

Cited by 90 (23 self)
 Add to MetaCart
Logical frameworks based on intuitionistic or linear logics with highertype quantification have been successfully used to give highlevel, modular, and formal specifications of many important judgments in the area of programming languages and inference systems. Given such specifications, it is natural to consider proving properties about the specified systems in the framework: for example, given the specification of evaluation for a functional programming language, prove that the language is deterministic or that evaluation preserves types. One challenge in developing a framework for such reasoning is that higherorder abstract syntax (HOAS), an elegant and declarative treatment of objectlevel abstraction and substitution, is difficult to treat in proofs involving induction. In this paper, we present a metalogic that can be used to reason about judgments coded using HOAS; this metalogic is an extension of a simple intuitionistic logic that admits higherorder quantification over simply typed λterms (key ingredients for HOAS) as well as induction and a notion of definition. The latter concept of definition is a prooftheoretic device that allows certain theories to be treated as “closed ” or as defining fixed points. We explore the difficulties of formal metatheoretic analysis of HOAS encodings by considering encodings of intuitionistic and linear logics, and formally derive the admissibility of cut for important subsets
Logical Support for Modularisation
 LOGICAL ENVIRONMENTS
, 1993
"... Modularisation is important for managing the complex structures that arise in large theorem proving problems, and in large software and/or hardware development projects. This paper studies some properties of logical systems that support the definition, combination, parameterisation and reuse of ..."
Abstract

Cited by 85 (28 self)
 Add to MetaCart
Modularisation is important for managing the complex structures that arise in large theorem proving problems, and in large software and/or hardware development projects. This paper studies some properties of logical systems that support the definition, combination, parameterisation and reuse of modules. Our results show some new connections among: (1) the preservation of various kinds of conservative extension under pushouts; (2) various distributive laws for information hiding over sums; and (3) (Craig style) interpolation properties. In addition, we study differences between syntactic and semantic formulations of conservative extension properties, and of distributive laws. A model theoretic property that we call exactness plays an important role in some results. This paper explores the interplay between syntax and semantics, and thus lies in the tradition of abstract model theory. We represent logical systems as institutions. An important technical foundation is a new ...
A concurrent logical framework I: Judgments and properties
, 2003
"... The Concurrent Logical Framework, or CLF, is a new logical framework in which concurrent computations can be represented as monadic objects, for which there is an intrinsic notion of concurrency. It is designed as a conservative extension of the linear logical framework LLF with the synchronous con ..."
Abstract

Cited by 73 (25 self)
 Add to MetaCart
The Concurrent Logical Framework, or CLF, is a new logical framework in which concurrent computations can be represented as monadic objects, for which there is an intrinsic notion of concurrency. It is designed as a conservative extension of the linear logical framework LLF with the synchronous connectives# of intuitionistic linear logic, encapsulated in a monad. LLF is itself a conservative extension of LF with the asynchronous connectives #, & and #.
A Concurrent Logical Framework II: Examples and Applications
, 2002
"... CLF is a new logical framework with an intrinsic notion of concurrency. It is designed as a conservative extension of the linear logical framework LLF with the synchronous connectives # of intuitionistic linear logic, encapsulated in a monad. LLF is itself a conservative extension of LF with the ..."
Abstract

Cited by 46 (30 self)
 Add to MetaCart
CLF is a new logical framework with an intrinsic notion of concurrency. It is designed as a conservative extension of the linear logical framework LLF with the synchronous connectives # of intuitionistic linear logic, encapsulated in a monad. LLF is itself a conservative extension of LF with the asynchronous connectives #.
Enhancing the Nuprl Proof Development System and Applying it to Computational Abstract Algebra
, 1995
"... This thesis describes substantial enhancements that were made to the software tools in the Nuprl system that are used to interactively guide the production of formal proofs. Over 20,000 lines of code were written for these tools. Also, a corpus of formal mathematics was created that consists of rou ..."
Abstract

Cited by 44 (4 self)
 Add to MetaCart
This thesis describes substantial enhancements that were made to the software tools in the Nuprl system that are used to interactively guide the production of formal proofs. Over 20,000 lines of code were written for these tools. Also, a corpus of formal mathematics was created that consists of roughly 500 definitions and 1300 theorems. Much of this material is of a foundational nature and supports all current work in Nuprl. This thesis concentrates on describing the half of this corpus that is concerned with abstract algebra and that covers topics central to the mathematics of the co...
Axiomatizing Reflective Logics and Languages
 Proceedings of Reflection'96
, 1996
"... The very success and breadth of reflective techniques underscores the need for a general theory of reflection. At present what we have is a wideranging variety of reflective systems, each explained in its own idiosyncratic terms. Metalogical foundations can allow us to capture the essential aspects ..."
Abstract

Cited by 35 (20 self)
 Add to MetaCart
The very success and breadth of reflective techniques underscores the need for a general theory of reflection. At present what we have is a wideranging variety of reflective systems, each explained in its own idiosyncratic terms. Metalogical foundations can allow us to capture the essential aspects of reflective systems in a formalismindependent way. This paper proposes metalogical axioms for reflective logics and declarative languages based on the theory of general logics [34]. In this way, several strands of work in reflection, including functional, equational, Horn logic, and rewriting logic reflective languages, as well as a variety of reflective theorem proving systems are placed within a common theoretical framework. General axioms for computational strategies, and for the internalization of those strategies in a reflective logic are also given. 1 Introduction Reflection is a fundamental idea. In logic it has been vigorously pursued by many researchers since the fundamental wor...
A Concurrent Logical Framework: The Propositional Fragment
, 2003
"... We present the propositional fragment CLF0 of the Concurrent Logical Framework (CLF). CLF extends the Linear Logical Framework to allow the natural representation of concurrent computations in an object language. The underlying type theory uses monadic types to segregate values from computations ..."
Abstract

Cited by 31 (3 self)
 Add to MetaCart
We present the propositional fragment CLF0 of the Concurrent Logical Framework (CLF). CLF extends the Linear Logical Framework to allow the natural representation of concurrent computations in an object language. The underlying type theory uses monadic types to segregate values from computations. This separation leads to a tractable notion of definitional equality that identifies computations di#ering only in the order of execution of independent steps. From a logical point of view our type theory can be seen as a novel combination of lax logic and dual intuitionistic linear logic. An encoding of a small Petri net exemplifies the representation methodology, which can be summarized as "concurrent computations as monadic expressions ".
A Metatheory of a Mechanized Object Theory
, 1994
"... In this paper we propose a metatheory, MT which represents the computation which implements its object theory, OT, and, in particular, the computation which implements deduction in OT. To emphasize this fact we say that MT is a metatheory of a mechanized object theory. MT has some "unusual" prope ..."
Abstract

Cited by 22 (10 self)
 Add to MetaCart
In this paper we propose a metatheory, MT which represents the computation which implements its object theory, OT, and, in particular, the computation which implements deduction in OT. To emphasize this fact we say that MT is a metatheory of a mechanized object theory. MT has some "unusual" properties, e.g. it explicitly represents failure in the application of inference rules, and the fact that large amounts of the code implementing OT are partial, i.e. they work only for a limited class of inputs. These properties allow us to use MT to express and prove tactics, i.e. expressions which specify how to compose possibly failing applications of inference rules, to interpret them procedurally to assert theorems in OT, to compile them into the system implementation code, and, finally, to generate MT automatically from the system code. The definition of MT is part of a larger project which aims at the implementation of selfreflective systems, i.e. systems which are able to intros...