Results 1  10
of
67
CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
 California Institute of Technology, Pasadena
, 2008
"... Abstract. Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect to an orthonormal basis. The major algorithmic challenge in compressive sampling is to approximate a compressible signal from noisy samples. This paper describes a new iterative recovery alg ..."
Abstract

Cited by 345 (6 self)
 Add to MetaCart
Abstract. Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect to an orthonormal basis. The major algorithmic challenge in compressive sampling is to approximate a compressible signal from noisy samples. This paper describes a new iterative recovery algorithm called CoSaMP that delivers the same guarantees as the best optimizationbased approaches. Moreover, this algorithm offers rigorous bounds on computational cost and storage. It is likely to be extremely efficient for practical problems because it requires only matrix–vector multiplies with the sampling matrix. For compressible signals, the running time is just O(N log 2 N), where N is the length of the signal. 1.
From theory to practice: SubNyquist sampling of sparse wideband analog signals
 IEEE J. SEL. TOPICS SIGNAL PROCESS
, 2010
"... Conventional subNyquist sampling methods for analog signals exploit prior information about the spectral support. In this paper, we consider the challenging problem of blind subNyquist sampling of multiband signals, whose unknown frequency support occupies only a small portion of a wide spectrum. ..."
Abstract

Cited by 69 (42 self)
 Add to MetaCart
Conventional subNyquist sampling methods for analog signals exploit prior information about the spectral support. In this paper, we consider the challenging problem of blind subNyquist sampling of multiband signals, whose unknown frequency support occupies only a small portion of a wide spectrum. Our primary design goals are efficient hardware implementation and low computational load on the supporting digital processing. We propose a system, named the modulated wideband converter, which first multiplies the analog signal by a bank of periodic waveforms. The product is then lowpass filtered and sampled uniformly at a low rate, which is orders of magnitude smaller than Nyquist. Perfect recovery from the proposed samples is achieved under certain necessary and sufficient conditions. We also develop a digital architecture, which allows either reconstruction of the analog input, or processing of any band of interest at a low rate, that is, without interpolating to the high Nyquist rate. Numerical simulations demonstrate many engineering aspects: robustness to noise and mismodeling, potential hardware simplifications, realtime performance for signals with timevarying support and stability to quantization effects. We compare our system with two previous approaches: periodic nonuniform sampling, which is bandwidth limited by existing hardware devices, and the random demodulator, which is restricted to discrete multitone signals and has a high computational load. In the broader context of Nyquist sampling, our scheme has the potential to break through the bandwidth barrier of stateoftheart analog conversion technologies such as interleaved converters.
Sensing by Random Convolution
 IEEE Int. Work. on Comp. Adv. MultiSensor Adaptive Proc., CAMPSAP
, 2007
"... Abstract. This paper outlines a new framework for compressive sensing: convolution with a random waveform followed by random time domain subsampling. We show that sensing by random convolution is a universally efficient data acquisition strategy in that an ndimensional signal which is S sparse in a ..."
Abstract

Cited by 65 (4 self)
 Add to MetaCart
Abstract. This paper outlines a new framework for compressive sensing: convolution with a random waveform followed by random time domain subsampling. We show that sensing by random convolution is a universally efficient data acquisition strategy in that an ndimensional signal which is S sparse in any fixed representation can be recovered from m � S log n measurements. We discuss two imaging scenarios — radar and Fourier optics — where convolution with a random pulse allows us to seemingly superresolve finescale features, allowing us to recover highresolution signals from lowresolution measurements. 1. Introduction. The new field of compressive sensing (CS) has given us a fresh look at data acquisition, one of the fundamental tasks in signal processing. The message of this theory can be summarized succinctly [7, 8, 10, 15, 32]: the number of measurements we need to reconstruct a signal depends on its sparsity rather than its bandwidth. These measurements, however, are different than the samples that
Compressive Sensing and Structured Random Matrices
 RADON SERIES COMP. APPL. MATH XX, 1–95 © DE GRUYTER 20YY
"... These notes give a mathematical introduction to compressive sensing focusing on recovery using ℓ1minimization and structured random matrices. An emphasis is put on techniques for proving probabilistic estimates for condition numbers of structured random matrices. Estimates of this type are key to ..."
Abstract

Cited by 59 (13 self)
 Add to MetaCart
These notes give a mathematical introduction to compressive sensing focusing on recovery using ℓ1minimization and structured random matrices. An emphasis is put on techniques for proving probabilistic estimates for condition numbers of structured random matrices. Estimates of this type are key to providing conditions that ensure exact or approximate recovery of sparse vectors using ℓ1minimization.
Signal Processing with Compressive Measurements
, 2009
"... The recently introduced theory of compressive sensing enables the recovery of sparse or compressible signals from a small set of nonadaptive, linear measurements. If properly chosen, the number of measurements can be much smaller than the number of Nyquistrate samples. Interestingly, it has been sh ..."
Abstract

Cited by 46 (20 self)
 Add to MetaCart
The recently introduced theory of compressive sensing enables the recovery of sparse or compressible signals from a small set of nonadaptive, linear measurements. If properly chosen, the number of measurements can be much smaller than the number of Nyquistrate samples. Interestingly, it has been shown that random projections are a nearoptimal measurement scheme. This has inspired the design of hardware systems that directly implement random measurement protocols. However, despite the intense focus of the community on signal recovery, many (if not most) signal processing problems do not require full signal recovery. In this paper, we take some first steps in the direction of solving inference problems—such as detection, classification, or estimation—and filtering problems using only compressive measurements and without ever reconstructing the signals involved. We provide theoretical bounds along with experimental results.
1 Sparse Recovery Using Sparse Matrices
"... Abstract—We survey algorithms for sparse recovery problems that are based on sparse random matrices. Such matrices has several attractive properties: they support algorithms with low computational complexity, and make it easy to perform incremental updates to signals. We discuss applications to seve ..."
Abstract

Cited by 26 (7 self)
 Add to MetaCart
Abstract—We survey algorithms for sparse recovery problems that are based on sparse random matrices. Such matrices has several attractive properties: they support algorithms with low computational complexity, and make it easy to perform incremental updates to signals. We discuss applications to several areas, including compressive sensing, data stream computing and group testing. I.
Robust 1Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors
, 2011
"... The Compressive Sensing (CS) framework aims to ease the burden on analogtodigital converters (ADCs) by reducing the sampling rate required to acquire and stably recover sparse signals. Practical ADCs not only sample but also quantize each measurement to a finite number of bits; moreover, there is ..."
Abstract

Cited by 26 (13 self)
 Add to MetaCart
The Compressive Sensing (CS) framework aims to ease the burden on analogtodigital converters (ADCs) by reducing the sampling rate required to acquire and stably recover sparse signals. Practical ADCs not only sample but also quantize each measurement to a finite number of bits; moreover, there is an inverse relationship between the achievable sampling rate and the bit depth. In this paper, we investigate an alternative CS approach that shifts the emphasis from the sampling rate to the number of bits per measurement. In particular, we explore the extreme case of 1bit CS measurements, which capture just their sign. Our results come in two flavors. First, we consider ideal reconstruction from noiseless 1bit measurements and provide a lower bound on the best achievable reconstruction error. We also demonstrate that a large class of measurement mappings achieve this optimal bound. Second, we consider reconstruction robustness to measurement errors and noise and introduce the Binary ɛStable Embedding (BɛSE) property, which characterizes the robustness measurement process to sign changes. We show the same class of matrices that provide optimal noiseless performance also enable such a robust mapping. On the practical side, we introduce the Binary Iterative Hard Thresholding (BIHT) algorithm for signal reconstruction from 1bit measurements that offers stateoftheart performance.
Democracy in Action: Quantization, Saturation, and Compressive Sensing
"... Recent theoretical developments in the area of compressive sensing (CS) have the potential to significantly extend the capabilities of digital data acquisition systems such as analogtodigital converters and digital imagers in certain applications. A key hallmark of CS is that it enables subNyquis ..."
Abstract

Cited by 23 (15 self)
 Add to MetaCart
Recent theoretical developments in the area of compressive sensing (CS) have the potential to significantly extend the capabilities of digital data acquisition systems such as analogtodigital converters and digital imagers in certain applications. A key hallmark of CS is that it enables subNyquist sampling for signals, images, and other data. In this paper, we explore and exploit another heretofore relatively unexplored hallmark, the fact that certain CS measurement systems are democractic, which means that each measurement carries roughly the same amount of information about the signal being acquired. Using the democracy property, we rethink how to quantize the compressive measurements in practical CS systems. If we were to apply the conventional wisdom gained from conventional ShannonNyquist uniform sampling, then we would scale down the analog signal amplitude (and therefore increase the quantization error) to avoid the gross saturation errors that occur when the signal amplitude exceeds the quantizer’s dynamic range. In stark contrast, we demonstrate that a CS system achieves the best performance when it operates at a significantly nonzero saturation rate. We develop two methods to recover signals from saturated CS measurements. The first directly exploits the democracy property by simply discarding the saturated measurements. The second integrates saturated measurements as constraints into standard linear programming and greedy recovery techniques. Finally, we develop a simple automatic gain control system that uses the saturation rate to optimize the input gain.
Compressive Sensing
, 2010
"... Compressive sensing is a new type of sampling theory, which predicts that sparse signals and images can be reconstructed from what was previously believed to be incomplete information. As a main feature, efficient algorithms such as ℓ1minimization can be used for recovery. The theory has many poten ..."
Abstract

Cited by 23 (8 self)
 Add to MetaCart
Compressive sensing is a new type of sampling theory, which predicts that sparse signals and images can be reconstructed from what was previously believed to be incomplete information. As a main feature, efficient algorithms such as ℓ1minimization can be used for recovery. The theory has many potential applications in signal processing and imaging. This chapter gives an introduction and overview on both theoretical and numerical aspects of compressive sensing.
Sparse Recovery from Combined Fusion Frame Measurements
 IEEE Trans. Inform. Theory
"... Sparse representations have emerged as a powerful tool in signal and information processing, culminated by the success of new acquisition and processing techniques such as Compressed Sensing (CS). Fusion frames are very rich new signal representation methods that use collections of subspaces instead ..."
Abstract

Cited by 23 (10 self)
 Add to MetaCart
Sparse representations have emerged as a powerful tool in signal and information processing, culminated by the success of new acquisition and processing techniques such as Compressed Sensing (CS). Fusion frames are very rich new signal representation methods that use collections of subspaces instead of vectors to represent signals. This work combines these exciting fields to introduce a new sparsity model for fusion frames. Signals that are sparse under the new model can be compressively sampled and uniquely reconstructed in ways similar to sparse signals using standard CS. The combination provides a promising new set of mathematical tools and signal models useful in a variety of applications. With the new model, a sparse signal has energy in very few of the subspaces of the fusion frame, although it does not need to be sparse within each of the subspaces it occupies. This sparsity model is captured using a mixed ℓ1/ℓ2 norm for fusion frames. A signal sparse in a fusion frame can be sampled using very few random projections and exactly reconstructed using a convex optimization that minimizes this mixed ℓ1/ℓ2 norm. The provided sampling conditions generalize coherence and RIP conditions used in standard CS theory. It is demonstrated that they are sufficient to guarantee sparse recovery of any signal sparse in our model. Moreover, an average case analysis is provided using a probability model on the sparse signal that shows that under very mild conditions the probability of recovery failure decays exponentially with increasing dimension of the subspaces. Index Terms