Results 1 
3 of
3
ON THE NUMERICAL EVALUATION OF FREDHOLM DETERMINANTS
, 804
"... Abstract. Some significant quantities in mathematics and physics are most naturally expressed as the Fredholm determinant of an integral operator, most notably many of the distribution functions in random matrix theory. Though their numerical values are of interest, there is no systematic numerical ..."
Abstract

Cited by 10 (5 self)
 Add to MetaCart
Abstract. Some significant quantities in mathematics and physics are most naturally expressed as the Fredholm determinant of an integral operator, most notably many of the distribution functions in random matrix theory. Though their numerical values are of interest, there is no systematic numerical treatment of Fredholm determinants to be found in the literature. Instead, the few numerical evaluations that are available rely on eigenfunction expansions of the operator, if expressible in terms of special functions, or on alternative, numerically more straightforwardly accessible analytic expressions, e.g., in terms of Painlevé transcendents, that have masterfully been derived in some cases. In this paper we close the gap in the literature by studying projection methods and, above all, a simple, easily implementable, general method for the numerical evaluation of Fredholm determinants that is derived from the classical Nyström method for the solution of Fredholm equations of the second kind. Using Gauss–Legendre or Clenshaw– Curtis as the underlying quadrature rule, we prove that the approximation error essentially behaves like the quadrature error for the sections of the kernel. In particular, we get exponential convergence for analytic kernels, which are typical in random matrix theory. The application of the method to the distribution functions of the Gaussian unitary ensemble (GUE), in the bulk and the edge scaling limit, is discussed in detail. After extending the method to systems of integral operators, we evaluate the twopoint correlation functions of the more recently studied Airy and Airy 1 processes. Key words. Fredholm determinant, Nyström’s method, projection method, trace class operators, random
On the Numerical Evaluation of Distributions in Random Matrix Theory: A Review
, 2010
"... Abstract. In this paper we review and compare the numerical evaluation of those probability distributions in random matrix theory that are analytically represented in terms of Painlevé transcendents or Fredholm determinants. Concrete examples for the Gaussian and Laguerre (Wishart) βensembles and t ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
Abstract. In this paper we review and compare the numerical evaluation of those probability distributions in random matrix theory that are analytically represented in terms of Painlevé transcendents or Fredholm determinants. Concrete examples for the Gaussian and Laguerre (Wishart) βensembles and their various scaling limits are discussed. We argue that the numerical approximation of Fredholm determinants is the conceptually more simple and efficient of the two approaches, easily generalized to the computation of joint probabilities and correlations. Having the means for extensive numerical explorations at hand, we discovered new and surprising determinantal formulae for the kth largest (or smallest) level in the edge scaling limits of the Orthogonal and Symplectic Ensembles; formulae that in turn led to improved numerical evaluations. The paper comes with a toolbox of Matlab functions that facilitates further mathematical experiments by the reader.
Performance of Statistical Tests for Source 1 Detection using Random Matrix Theory
, 2009
"... This paper introduces a unified framework for the detection of a source with a sensor array in the context where the noise variance and the channel between the source and the sensors are unknown at the receiver. The Generalized Maximum Likelihood Test is studied and yields the analysis of the ratio ..."
Abstract
 Add to MetaCart
This paper introduces a unified framework for the detection of a source with a sensor array in the context where the noise variance and the channel between the source and the sensors are unknown at the receiver. The Generalized Maximum Likelihood Test is studied and yields the analysis of the ratio between the maximum eigenvalue of the sampled covariance matrix and its normalized trace. Using recent results of random matrix theory, a practical way to evaluate the threshold and the pvalue of the test is provided in the asymptotic regime where the number K of sensors and the number N of observations per sensor are large but have the same order of magnitude. The theoretical performance of the test is then analyzed in terms of Receiver Operating Characteristic (ROC) curve. It is in particular proved that both Type I and Type II error probabilities converge to zero exponentially as the dimensions increase at the same rate, and closedform expressions are provided for the error exponents. These theoretical results rely on a precise description of the large deviations of the largest eigenvalue of spiked random matrix models, and establish that the presented test asymptotically outperforms the popular test based on the condition number of the sampled covariance matrix. This work was partially supported by french programs ANR07MDCO01201 ‘Sesame’, and ANR08BLAN031103