Results 1  10
of
68
The Power of Two Choices in Randomized Load Balancing
 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
, 1996
"... Suppose that n balls are placed into n bins, each ball being placed into a bin chosen independently and uniformly at random. Then, with high probability, the maximum load in any bin is approximately log n log log n . Suppose instead that each ball is placed sequentially into the least full of d ..."
Abstract

Cited by 201 (23 self)
 Add to MetaCart
Suppose that n balls are placed into n bins, each ball being placed into a bin chosen independently and uniformly at random. Then, with high probability, the maximum load in any bin is approximately log n log log n . Suppose instead that each ball is placed sequentially into the least full of d bins chosen independently and uniformly at random. It has recently been shown that the maximum load is then only log log n log d +O(1) with high probability. Thus giving each ball two choices instead of just one leads to an exponential improvement in the maximum load. This result demonstrates the power of two choices, and it has several applications to load balancing in distributed systems. In this thesis, we expand upon this result by examining related models and by developing techniques for stu...
Tight bounds for worstcase equilibria
 Proc. 13th SODA
, 2002
"... We study the problem of traffic routing in noncooperative networks. In such networks, users may follow selfish strategies to optimize their own performance measure and therefore their behavior does not have to lead to optimal performance of the entire network. In this paper we investigate the worst ..."
Abstract

Cited by 160 (6 self)
 Add to MetaCart
We study the problem of traffic routing in noncooperative networks. In such networks, users may follow selfish strategies to optimize their own performance measure and therefore their behavior does not have to lead to optimal performance of the entire network. In this paper we investigate the worstcase coordination ratio, which is a game theoretic measure aiming to reflect the price of selfish routing. Following a line of previous work, we focus on the most basic networks consisting of parallel links with linear latency functions. Our main result is that the worstcase coordination ratio on m parallel links of possibly different speeds is logm Θ log log logm In fact, we are able to give an exact description of the worstcase coordination ratio depending on the number of links and the ratio of the speed of the fastest link over the speed of the slowest link. For example, for the special case in which all m parallel links have the same speed, we can prove that the worstcase coordination ratio is Γ (−1) (m) + Θ(1) with Γ denoting the Gamma (factorial) function. Our bounds entirely resolve an open problem posed recently by Koutsoupias and Papadimitriou [KP99].
Dynamic Perfect Hashing: Upper and Lower Bounds
, 1990
"... The dynamic dictionary problem is considered: provide an algorithm for storing a dynamic set, allowing the operations insert, delete, and lookup. A dynamic perfect hashing strategy is given: a randomized algorithm for the dynamic dictionary problem that takes O(1) worstcase time for lookups and ..."
Abstract

Cited by 127 (13 self)
 Add to MetaCart
The dynamic dictionary problem is considered: provide an algorithm for storing a dynamic set, allowing the operations insert, delete, and lookup. A dynamic perfect hashing strategy is given: a randomized algorithm for the dynamic dictionary problem that takes O(1) worstcase time for lookups and O(1) amortized expected time for insertions and deletions; it uses space proportional to the size of the set stored. Furthermore, lower bounds for the time complexity of a class of deterministic algorithms for the dictionary problem are proved. This class encompasses realistic hashingbased schemes that use linear space. Such algorithms have amortized worstcase time complexity \Omega(log n) for a sequence of n insertions and
Partial and approximate symmetry detection for 3D geometry
 ACM TRANSACTIONS ON GRAPHICS
, 2006
"... “Symmetry is a complexityreducing concept [...]; seek it everywhere.” Alan J. Perlis Many natural and manmade objects exhibit significant symmetries or contain repeated substructures. This paper presents a new algorithm that processes geometric models and efficiently discovers and extracts a com ..."
Abstract

Cited by 112 (17 self)
 Add to MetaCart
“Symmetry is a complexityreducing concept [...]; seek it everywhere.” Alan J. Perlis Many natural and manmade objects exhibit significant symmetries or contain repeated substructures. This paper presents a new algorithm that processes geometric models and efficiently discovers and extracts a compact representation of their Euclidean symmetries. These symmetries can be partial, approximate, or both. The method is based on matching simple local shape signatures in pairs and using these matches to accumulate evidence for symmetries in an appropriate transformation space. A clustering stage extracts potential significant symmetries of the object, followed by a verification step. Based on a statistical sampling analysis, we provide theoretical guarantees on the success rate of our algorithm. The extracted symmetry graph representation captures important highlevel information about the structure of a geometric model which in turn enables a large set of further processing operations, including shape compression, segmentation, consistent editing, symmetrization, indexing for retrieval, etc.
The Power of Two Random Choices: A Survey of Techniques and Results
 in Handbook of Randomized Computing
, 2000
"... ITo motivate this survey, we begin with a simple problem that demonstrates a powerful fundamental idea. Suppose that n balls are thrown into n bins, with each ball choosing a bin independently and uniformly at random. Then the maximum load, or the largest number of balls in any bin, is approximately ..."
Abstract

Cited by 99 (2 self)
 Add to MetaCart
ITo motivate this survey, we begin with a simple problem that demonstrates a powerful fundamental idea. Suppose that n balls are thrown into n bins, with each ball choosing a bin independently and uniformly at random. Then the maximum load, or the largest number of balls in any bin, is approximately log n= log log n with high probability. Now suppose instead that the balls are placed sequentially, and each ball is placed in the least loaded of d 2 bins chosen independently and uniformly at random. Azar, Broder, Karlin, and Upfal showed that in this case, the maximum load is log log n= log d + (1) with high probability [ABKU99]. The important implication of this result is that even a small amount of choice can lead to drastically different results in load balancing. Indeed, having just two random choices (i.e.,...
balls into bins” — A simple and tight analysis
 Lecture Notes in Computer Science
, 1998
"... Abstract. Suppose we sequentially throw m balls into n bins. It is a natural question to ask for the maximum number of balls in any bin. In this paper we shall derive sharp upper and lower bounds which are reached with high probability. We prove bounds for all values of m(n) n=polylog(n) by using th ..."
Abstract

Cited by 76 (2 self)
 Add to MetaCart
Abstract. Suppose we sequentially throw m balls into n bins. It is a natural question to ask for the maximum number of balls in any bin. In this paper we shall derive sharp upper and lower bounds which are reached with high probability. We prove bounds for all values of m(n) n=polylog(n) by using the simple and wellknown method of the rst and second moment. 1
A simpler approach to matrix completion
 the Journal of Machine Learning Research
"... This paper provides the best bounds to date on the number of randomly sampled entries required to reconstruct an unknown low rank matrix. These results improve on prior work by Candès and Recht [4], Candès and Tao [7], and Keshavan, Montanari, and Oh [18]. The reconstruction is accomplished by minim ..."
Abstract

Cited by 58 (3 self)
 Add to MetaCart
This paper provides the best bounds to date on the number of randomly sampled entries required to reconstruct an unknown low rank matrix. These results improve on prior work by Candès and Recht [4], Candès and Tao [7], and Keshavan, Montanari, and Oh [18]. The reconstruction is accomplished by minimizing the nuclear norm, or sum of the singular values, of the hidden matrix subject to agreement with the provided entries. If the underlying matrix satisfies a certain incoherence condition, then the number of entries required is equal to a quadratic logarithmic factor times the number of parameters in the singular value decomposition. The proof of this assertion is short, self contained, and uses very elementary analysis. The novel techniques herein are based on recent work in quantum information theory.
Parallel Randomized Load Balancing
 In Symposium on Theory of Computing. ACM
, 1995
"... It is well known that after placing n balls independently and uniformly at random into n bins, the fullest bin holds \Theta(log n= log log n) balls with high probability. Recently, Azar et al. analyzed the following: randomly choose d bins for each ball, and then sequentially place each ball in the ..."
Abstract

Cited by 56 (8 self)
 Add to MetaCart
It is well known that after placing n balls independently and uniformly at random into n bins, the fullest bin holds \Theta(log n= log log n) balls with high probability. Recently, Azar et al. analyzed the following: randomly choose d bins for each ball, and then sequentially place each ball in the least full of its chosen bins [2]. They show that the fullest bin contains only log log n= log d + \Theta(1) balls with high probability. We explore extensions of this result to parallel and distributed settings. Our results focus on the tradeoff between the amount of communication and the final load. Given r rounds of communication, we provide lower bounds on the maximum load of \Omega\Gamma r p log n= log log n) for a wide class of strategies. Our results extend to the case where the number of rounds is allowed to grow with n. We then demonstrate parallelizations of the sequential strategy presented in Azar et al. that achieve loads within a constant factor of the lower bound for two ...