Results 11  20
of
34
Geometric and higher order logic in terms of abstract Stone duality
 THEORY AND APPLICATIONS OF CATEGORIES
, 2000
"... The contravariant powerset, and its generalisations ΣX to the lattices of open subsets of a locally compact topological space and of recursively enumerable subsets of numbers, satisfy the Euclidean principle that φ ∧ F (φ) =φ ∧ F (⊤). Conversely, when the adjunction Σ (−) ⊣ Σ (−) is monadic, this ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
The contravariant powerset, and its generalisations ΣX to the lattices of open subsets of a locally compact topological space and of recursively enumerable subsets of numbers, satisfy the Euclidean principle that φ ∧ F (φ) =φ ∧ F (⊤). Conversely, when the adjunction Σ (−) ⊣ Σ (−) is monadic, this equation implies that Σ classifies some class of monos, and the Frobenius law ∃x.(φ(x) ∧ ψ) =(∃x.φ(x)) ∧ ψ) for the existential quantifier. In topology, the lattice duals of these equations also hold, and are related to the Phoa principle in synthetic domain theory. The natural definitions of discrete and Hausdorff spaces correspond to equality and inequality, whilst the quantifiers considered as adjoints characterise open (or, as we call them, overt) and compact spaces. Our treatment of overt discrete spaces and open maps is precisely dual to that of compact Hausdorff spaces and proper maps. The category of overt discrete spaces forms a pretopos and the paper concludes with a converse of Paré’s theorem (that the contravariant powerset functor is monadic) that characterises elementary toposes by means of the monadic and Euclidean properties together with all quantifiers, making no reference to subsets.
Relational parametricity for control considered as a computational effect
 Electr. Notes Theor. Comput. Sci
"... Replace this file with prentcsmacro.sty for your meeting, or with entcsmacro.sty for your meeting. Both can be ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
Replace this file with prentcsmacro.sty for your meeting, or with entcsmacro.sty for your meeting. Both can be
An Elementary Theory of the Category of Locally Compact Locales
, 2003
"... The category of locally compact locales over any elementary topos is characterised by means of the axioms of abstract Stone duality (monadicity of the topology, considered as a selfadjoint exponential # , and Scott continuity, F# = ##. ..."
Abstract

Cited by 3 (3 self)
 Add to MetaCart
The category of locally compact locales over any elementary topos is characterised by means of the axioms of abstract Stone duality (monadicity of the topology, considered as a selfadjoint exponential # , and Scott continuity, F# = ##.
Lifting as a KZdoctrine
 Proceedings of the 6 th International Conference, CTCS'95, volume 953 of Lecture Notes in Computer Science
, 1995
"... this paper, is the analysis of notions of approximation aiming at explaining and justifying (ordertheoretic) properties of categories of domains. For example, in [Fio94c, Fio94a], while studying the interaction between partiality and orderenrichment we considered contextual approximation which, in ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
this paper, is the analysis of notions of approximation aiming at explaining and justifying (ordertheoretic) properties of categories of domains. For example, in [Fio94c, Fio94a], while studying the interaction between partiality and orderenrichment we considered contextual approximation which, in the framework we were working in, coincided with the specialisation preorder . But in the applications carried out in [FP94, Fio94a] we had to work with an axiomatised notion of approximation, instead of the aforementioned one, for the following two reasons: first, the specialisation preorder is not appropriate in categories of domains and stable functions (see [Fio94c]) and, second, we do not know of nonordertheoretic axioms making the specialisation preorder !complete. To overcome these drawbacks another notion of approximation was to be considered. And, it was the second problem that motivated the intensional notion of approximation provided by the path relation. In fact, it is shown in [Fio94b] that under suitable axioms the path relation can be equipped with a canonical passagetothelimit operator appropriate for fixedpoint computations; stronger axioms make this operator be given by lubs of !chains
Fundamentals of object oriented database modelling. Intellektual ~ny Sistemy (Intelligent Systems
 Intelligent Systems
, 1996
"... ..."
Inductive Construction of Repletion
 Appl. Categ. Structures
, 1997
"... Introduction In [2] Martin Hyland has proposed the notion of "Sreplete object" relative to a given object S as the appropriate generalisation of predomain for the purposes of Synthetic Domain Theory (SDT). The aim of SDT is to provide a constructive logical framework for reasoning about ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
Introduction In [2] Martin Hyland has proposed the notion of "Sreplete object" relative to a given object S as the appropriate generalisation of predomain for the purposes of Synthetic Domain Theory (SDT). The aim of SDT is to provide a constructive logical framework for reasoning about domains and thus about meanings of functional programs where all functions between predomains are continuous and all endofunctions on domains have least fixpoints. Furthermore, SDT allows one to consider predomains as a full reflective subcategory of the ambient category of constructive sets. For this reason the ambient category is assumed to be a model of some sufficiently strong impredicative constructive type theory which will be used as the internal language for the ambient category of constructive sets in order to replace complicated external arguments by simpler proofs in the
Computability structures, simulations and realizability
, 2011
"... We generalize the standard construction of realizability models (specifically, of categories of assemblies) to a very wide class of computability structures, broad enough to embrace models of computation such as labelled transition systems and process algebras. We also discuss a general notion of si ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
We generalize the standard construction of realizability models (specifically, of categories of assemblies) to a very wide class of computability structures, broad enough to embrace models of computation such as labelled transition systems and process algebras. We also discuss a general notion of simulation between such computability structures, and show that such simulations correspond precisely to certain functors between the realizability models. Furthermore, we show that our class of computability structures has good closure properties — in particular, it is ‘cartesian closed ’ in a slightly relaxed sense. We also investigate some important subclasses of computability structures and of simulations between them. We suggest that our 2category of computability structures and simulations may offer a framework for a general investigation of questions of computational power, abstraction and simulability for a wide range of computation models from across computer science.
The Dedekind reals in abstract Stone duality
 Mathematical Structures in Computer Science
, 2008
"... Abstract Stone Duality (ASD) is a direct axiomatisation of general topology, in contrast to the traditional and all other contemporary approaches, which rely on a prior notion of discrete set, type or object of a topos. ASD reconciles mathematical and computational viewpoints, providing an inherentl ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Abstract Stone Duality (ASD) is a direct axiomatisation of general topology, in contrast to the traditional and all other contemporary approaches, which rely on a prior notion of discrete set, type or object of a topos. ASD reconciles mathematical and computational viewpoints, providing an inherently computable calculus that does not sacrifice key properties of real analysis such as compactness of the closed interval. Previous theories of recursive analysis failed to do this because they were based on points; ASD succeeds because, like locale theory and formal topology, it is founded on the algebra of open subspaces. ASD is presented as a lambdacalculus, of which we provide a selfcontained summary, as the foundational background has been investigated in earlier work. The core of the paper constructs the real line using twosided Dedekind cuts. We show that the closed interval is compact and overt, where these concepts are defined using quantifiers. Further topics, such as the Intermediate Value Theorem, are presented in a separate paper that builds on this one. The interval domain plays an important foundational role. However, we see intervals as generalised Dedekind cuts, which underly the construction of the real line, not as sets or pairs of real numbers. We make a thorough study of arithmetic, in which our operations are more complicated than Moore’s, because we work constructively, and we also consider backtofront (Kaucher) intervals. Finally, we compare ASD with other systems of constructive and computable topology and analysis.