Results 1 
8 of
8
Using synthetic domain theory to prove operational properties of a polymorphic programming language based on strictness
 Manuscript
"... We present a simple and workable axiomatization of domain theory within intuitionistic set theory, in which predomains are (special) sets, and domains are algebras for a simple equational theory. We use the axioms to construct a relationally parametric settheoretic model for a compact but powerful ..."
Abstract

Cited by 12 (3 self)
 Add to MetaCart
(Show Context)
We present a simple and workable axiomatization of domain theory within intuitionistic set theory, in which predomains are (special) sets, and domains are algebras for a simple equational theory. We use the axioms to construct a relationally parametric settheoretic model for a compact but powerful polymorphic programming language, given by a novel extension of intuitionistic linear type theory based on strictness. By applying the model, we establish the fundamental operational properties of the language. 1.
Synthetic domain theory and models of linear Abadi & Plotkin logic
, 2005
"... Plotkin suggested using a polymorphic dual intuitionistic / linear type theory (PILLY) as a metalanguage for parametric polymorphism and recursion. In recent work the first two authors and R.L. Petersen have defined a notion of parametric LAPLstructure, which are models of PILLY, in which one can r ..."
Abstract

Cited by 6 (5 self)
 Add to MetaCart
(Show Context)
Plotkin suggested using a polymorphic dual intuitionistic / linear type theory (PILLY) as a metalanguage for parametric polymorphism and recursion. In recent work the first two authors and R.L. Petersen have defined a notion of parametric LAPLstructure, which are models of PILLY, in which one can reason using parametricity and, for example, solve a large class of domain equations, as suggested by Plotkin. In this paper we show how an interpretation of a strict version of Bierman, Pitts and Russo’s language Lily into synthetic domain theory presented by Simpson and Rosolini gives rise to a parametric LAPLstructure. This adds to the evidence that the notion of LAPLstructure is a general notion suitable for treating many different parametric models, and it provides formal proofs of consequences of parametricity expected to hold for the interpretation. Finally, we show how these results in combination with Rosolini and Simpson’s computational adequacy result can be used to prove consequences of parametricity for Lily. In particular we show that one can solve domain equations in Lily up to ground contextual equivalence. 1
Relating firstorder set theories, toposes and categories of classes
 In preparation
, 2006
"... This paper introduces Basic Intuitionistic Set Theory BIST, and investigates it as a firstorder settheory extending the internal logic of elementary toposes. Given an elementary topos, together with the extra structure of a directed structural system of inclusions (dssi) on the topos, a forcingst ..."
Abstract

Cited by 4 (4 self)
 Add to MetaCart
(Show Context)
This paper introduces Basic Intuitionistic Set Theory BIST, and investigates it as a firstorder settheory extending the internal logic of elementary toposes. Given an elementary topos, together with the extra structure of a directed structural system of inclusions (dssi) on the topos, a forcingstyle interpretation of the language of firstorder set theory in the topos is given, which conservatively extends the internal logic of the topos. Since every topos is equivalent to one carrying a dssi, the language of firstorder has a forcing interpretation in every elementary topos. We prove that the set theory BIST+ Coll (where Coll is the strong Collection axiom) is sound and complete relative to forcing interpretations in toposes with natural numbers object (nno). Furthermore, in the case that the structural system of inclusions is superdirected, the full Separation schema is modelled. We show that every cocomplete topos and every realizability topos can be endowed (up to equivalence) with such a superdirected structural system of inclusions. This provides a uniform explanation for why such “realworld ” toposes model Separation. A large part of the paper is devoted to an alternative notion of categorytheoretic model for BIST, which, following the general approach of Joyal and Moerdijk’s Algebraic Set Theory, axiomatizes the structure possessed by categories of classes compatible with ∗Corresponding author. 1Previously, lecturer at HeriotWatt University (2000–2001), and the IT University of
An Outline of Algebraic Set Theory
"... This survey article is intended to introduce the reader to the field of Algebraic Set Theory, in which models of set theory of a new and fascinating kind are determined algebraically. The method is quite robust, admitting adjustment in several respects to model different theories including classical ..."
Abstract
 Add to MetaCart
This survey article is intended to introduce the reader to the field of Algebraic Set Theory, in which models of set theory of a new and fascinating kind are determined algebraically. The method is quite robust, admitting adjustment in several respects to model different theories including classical, intuitionistic, bounded, and predicative ones. Under this scheme some familiar set theoretic properties are related to algebraic ones, like freeness, while others result from logical constraints, like definability. The overall theory is complete in two important respects: conventional elementary set theory axiomatizes algebraic framework itself are also complete with respect to a range of natural models consisting of “ideals ” of sets, suitably defined. Some previous results involving realizability, forcing, and sheaf models are
Universes in Toposes
, 2004
"... Abstract. We discuss a notion of universe in toposes which from a logical point of view gives rise to an extension of Higher Order Intuitionistic Arithmetic (HAH) that allows one to construct families of types in such a universe by structural recursion and to quantify over such families. Further, we ..."
Abstract
 Add to MetaCart
(Show Context)
Abstract. We discuss a notion of universe in toposes which from a logical point of view gives rise to an extension of Higher Order Intuitionistic Arithmetic (HAH) that allows one to construct families of types in such a universe by structural recursion and to quantify over such families. Further, we show that (hierarchies of) such universes do exist in all sheaf and realizability toposes but neither in the free topos nor in the Vω+ω model of Zermelo set theory. Though universes in Set are necessarily of strongly inaccessible cardinality it remains an open question whether toposes with a universe allow one to construct internal models of Intuitionistic Zermelo Fraenkel set theory (IZF). The background information about toposes and fibred categories as needed for our discussion in this paper can be found e.g. in the fairly accessible sources [MM, Jac, Str2]. 1