Results 1  10
of
10
Notions of Computation and Monads
, 1991
"... The i.calculus is considered a useful mathematical tool in the study of programming languages, since programs can be identified with Iterms. However, if one goes further and uses bnconversion to prove equivalence of programs, then a gross simplification is introduced (programs are identified with ..."
Abstract

Cited by 733 (15 self)
 Add to MetaCart
The i.calculus is considered a useful mathematical tool in the study of programming languages, since programs can be identified with Iterms. However, if one goes further and uses bnconversion to prove equivalence of programs, then a gross simplification is introduced (programs are identified with total functions from calues to values) that may jeopardise the applicability of theoretical results, In this paper we introduce calculi. based on a categorical semantics for computations, that provide a correct basis for proving equivalence of programs for a wide range of notions of computation.
Computational LambdaCalculus and Monads
, 1988
"... The calculus is considered an useful mathematical tool in the study of programming languages, since programs can be identified with terms. However, if one goes further and uses fijconversion to prove equivalence of programs, then a gross simplification 1 is introduced, that may jeopardise the ..."
Abstract

Cited by 441 (6 self)
 Add to MetaCart
The calculus is considered an useful mathematical tool in the study of programming languages, since programs can be identified with terms. However, if one goes further and uses fijconversion to prove equivalence of programs, then a gross simplification 1 is introduced, that may jeopardise the applicability of theoretical results to real situations. In this paper we introduce a new calculus based on a categorical semantics for computations. This calculus provides a correct basis for proving equivalence of programs, independent from any specific computational model. 1 Introduction This paper is about logics for reasoning about programs, in particular for proving equivalence of programs. Following a consolidated tradition in theoretical computer science we identify programs with the closed terms, possibly containing extra constants, corresponding to some features of the programming language under consideration. There are three approaches to proving equivalence of programs: ffl T...
The ProofTheory and Semantics of Intuitionistic Modal Logic
, 1994
"... Possible world semantics underlies many of the applications of modal logic in computer science and philosophy. The standard theory arises from interpreting the semantic definitions in the ordinary metatheory of informal classical mathematics. If, however, the same semantic definitions are interpret ..."
Abstract

Cited by 100 (0 self)
 Add to MetaCart
Possible world semantics underlies many of the applications of modal logic in computer science and philosophy. The standard theory arises from interpreting the semantic definitions in the ordinary metatheory of informal classical mathematics. If, however, the same semantic definitions are interpreted in an intuitionistic metatheory then the induced modal logics no longer satisfy certain intuitionistically invalid principles. This thesis investigates the intuitionistic modal logics that arise in this way. Natural deduction systems for various intuitionistic modal logics are presented. From one point of view, these systems are selfjustifying in that a possible world interpretation of the modalities can be read off directly from the inference rules. A technical justification is given by the faithfulness of translations into intuitionistic firstorder logic. It is also established that, in many cases, the natural deduction systems induce wellknown intuitionistic modal logics, previously given by Hilbertstyle axiomatizations. The main benefit of the natural deduction systems over axiomatizations is their
Using synthetic domain theory to prove operational properties of a polymorphic programming language based on strictness
 Manuscript
"... We present a simple and workable axiomatization of domain theory within intuitionistic set theory, in which predomains are (special) sets, and domains are algebras for a simple equational theory. We use the axioms to construct a relationally parametric settheoretic model for a compact but powerful ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
We present a simple and workable axiomatization of domain theory within intuitionistic set theory, in which predomains are (special) sets, and domains are algebras for a simple equational theory. We use the axioms to construct a relationally parametric settheoretic model for a compact but powerful polymorphic programming language, given by a novel extension of intuitionistic linear type theory based on strictness. By applying the model, we establish the fundamental operational properties of the language. 1.
Computational Adequacy for Recursive Types in Models of Intuitionistic Set Theory
 In Proc. 17th IEEE Symposium on Logic in Computer Science
, 2003
"... This paper provides a unifying axiomatic account of the interpretation of recursive types that incorporates both domaintheoretic and realizability models as concrete instances. Our approach is to view such models as full subcategories of categorical models of intuitionistic set theory. It is shown ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
This paper provides a unifying axiomatic account of the interpretation of recursive types that incorporates both domaintheoretic and realizability models as concrete instances. Our approach is to view such models as full subcategories of categorical models of intuitionistic set theory. It is shown that the existence of solutions to recursive domain equations depends upon the strength of the set theory. We observe that the internal set theory of an elementary topos is not strong enough to guarantee their existence. In contrast, as our first main result, we establish that solutions to recursive domain equations do exist when the category of sets is a model of full intuitionistic ZermeloFraenkel set theory. We then apply this result to obtain a denotational interpretation of FPC, a recursively typed lambdacalculus with callbyvalue operational semantics. By exploiting the intuitionistic logic of the ambient model of intuitionistic set theory, we analyse the relationship between operational and denotational semantics. We first prove an “internal ” computational adequacy theorem: the model always believes that the operational and denotational notions of termination agree. This allows us to identify, as our second main result, a necessary and sufficient condition for genuine “external ” computational adequacy to hold, i.e. for the operational and denotational notions of termination to coincide in the real world. The condition is formulated as a simple property of the internal logic, related to the logical notion of 1consistency. We provide useful sufficient conditions for establishing that the logical property holds in practice. Finally, we outline how the methods of the paper may be applied to concrete models of FPC. In doing so, we obtain computational adequacy results for an extensive range of realizability and domaintheoretic models.
Monad Transformers as Monoid Transformers
"... The incremental approach to modular monadic semantics constructs complex monads by using monad transformers to add computational features to a preexisting monad. A complication of this approach is that the operations associated to the preexisting monad need to be lifted to the new monad. In a compa ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
The incremental approach to modular monadic semantics constructs complex monads by using monad transformers to add computational features to a preexisting monad. A complication of this approach is that the operations associated to the preexisting monad need to be lifted to the new monad. In a companion paper by Jaskelioff, the lifting problem has been addressed in the setting of system F ω. Here, we recast and extend those results in a categorytheoretic setting. We abstract and generalize from monads to monoids (in a monoidal category), and from monad transformers to monoid transformers. The generalization brings more simplicity and clarity, and opens the way for lifting of operations with applicability beyond monads. Key words: Monad, Monoid, Monoidal Category
Towards Implementing an Enterprise GroupwareIntegrated Human Resources Information System
, 2004
"... Human resources management software is having a wide audience at present. However, no truly integrate solution has been proposed yet to improve the systems concerned. Approaches to extra data collection for appraisal decisionmaking are considered on the concept modeling theoretical basis. Cur ..."
Abstract
 Add to MetaCart
Human resources management software is having a wide audience at present. However, no truly integrate solution has been proposed yet to improve the systems concerned. Approaches to extra data collection for appraisal decisionmaking are considered on the concept modeling theoretical basis. Current technologies in stateoftheart HR management software are compared. Design and implementation aspects for a Webwired truly integrated secure and scalable eventdriven enterprise system are described. Benchmark results are presented. 1.