Results 1 
4 of
4
A Convenient Category of Domains
 GDP FESTSCHRIFT ENTCS, TO APPEAR
"... We motivate and define a category of topological domains, whose objects are certain topological spaces, generalising the usual ωcontinuous dcppos of domain theory. Our category supports all the standard constructions of domain theory, including the solution of recursive domain equations. It also su ..."
Abstract

Cited by 13 (3 self)
 Add to MetaCart
We motivate and define a category of topological domains, whose objects are certain topological spaces, generalising the usual ωcontinuous dcppos of domain theory. Our category supports all the standard constructions of domain theory, including the solution of recursive domain equations. It also supports the construction of free algebras for (in)equational theories, can be used as the basis for a theory of computability, and provides a model of parametric polymorphism.
Categorical and domain theoretic models of parametric polymorphism
, 2005
"... We present a domaintheoretic model of parametric polymorphism based on admissible per’s over a domaintheoretic model of the untyped lambda calculus. The model is shown to be a model of Abadi & Plotkin’s logic for parametricity, by the construction of an LAPLstructure as defined by the authors in ..."
Abstract

Cited by 9 (6 self)
 Add to MetaCart
We present a domaintheoretic model of parametric polymorphism based on admissible per’s over a domaintheoretic model of the untyped lambda calculus. The model is shown to be a model of Abadi & Plotkin’s logic for parametricity, by the construction of an LAPLstructure as defined by the authors in [7, 5]. This construction gives formal proof of solutions to a large class of recursive domain equations, which we explicate. As an example of a computation in the model, we explicitly describe the natural numbers object obtained using parametricity. The theory of admissible per’s can be considered a domain theory for (impredicative) polymorphism. By studying various categories of admissible and chain complete per’s and their relations, we discover a picture very similar to that of domain theory. 1
Synthetic domain theory and models of linear Abadi & Plotkin logic
, 2005
"... Plotkin suggested using a polymorphic dual intuitionistic / linear type theory (PILLY) as a metalanguage for parametric polymorphism and recursion. In recent work the first two authors and R.L. Petersen have defined a notion of parametric LAPLstructure, which are models of PILLY, in which one can r ..."
Abstract

Cited by 5 (4 self)
 Add to MetaCart
Plotkin suggested using a polymorphic dual intuitionistic / linear type theory (PILLY) as a metalanguage for parametric polymorphism and recursion. In recent work the first two authors and R.L. Petersen have defined a notion of parametric LAPLstructure, which are models of PILLY, in which one can reason using parametricity and, for example, solve a large class of domain equations, as suggested by Plotkin. In this paper we show how an interpretation of a strict version of Bierman, Pitts and Russo’s language Lily into synthetic domain theory presented by Simpson and Rosolini gives rise to a parametric LAPLstructure. This adds to the evidence that the notion of LAPLstructure is a general notion suitable for treating many different parametric models, and it provides formal proofs of consequences of parametricity expected to hold for the interpretation. Finally, we show how these results in combination with Rosolini and Simpson’s computational adequacy result can be used to prove consequences of parametricity for Lily. In particular we show that one can solve domain equations in Lily up to ground contextual equivalence. 1
CATEGORYTHEORETIC MODELS OF LINEAR ABADI & PLOTKIN LOGIC
, 2008
"... This paper presents a sound and complete categorytheoretic notion of models for Linear Abadi & Plotkin Logic [Birkedal et al., 2006], a logic suitable for reasoning about parametricity in combination with recursion. A subclass of these called parametric LAPL structures can be seen as an axiomatiza ..."
Abstract
 Add to MetaCart
This paper presents a sound and complete categorytheoretic notion of models for Linear Abadi & Plotkin Logic [Birkedal et al., 2006], a logic suitable for reasoning about parametricity in combination with recursion. A subclass of these called parametric LAPL structures can be seen as an axiomatization of domain theoretic models of parametric polymorphism, and we show how to solve general (nested) recursive domain equations in these. Parametric LAPL structures constitute a general notion of model of parametricity in a setting with recursion. In future papers we will demonstrate this by showing how many different models of parametricity and recursion give rise to parametric LAPL structures, including Simpson and Rosolini’s set theoretic models [Rosolini and Simpson, 2004], a syntactic model based on Lily [Pitts, 2000, Bierman et al., 2000] and a model based on admissible pers over a reflexive domain [Birkedal et al., 2007].