Results 1 
1 of
1
Tensor products and homotopies for ωgroupoids and crossed complexes
, 2007
"... Crossed complexes have longstanding uses, explicit and implicit, in homotopy theory and the cohomology of groups. It is here shown that the category of crossed complexes over groupoids has a symmetric monoidal closed structure in which the internal Hom functor is built from morphisms of crossed comp ..."
Abstract

Cited by 54 (23 self)
 Add to MetaCart
(Show Context)
Crossed complexes have longstanding uses, explicit and implicit, in homotopy theory and the cohomology of groups. It is here shown that the category of crossed complexes over groupoids has a symmetric monoidal closed structure in which the internal Hom functor is built from morphisms of crossed complexes, nonabelian chain homotopies between them and similar higher homotopies. The tensor product involves nonabelian constructions related to the commutator calculus and the homotopy addition lemma. This monoidal closed structure is derived from that on the equivalent category of ωgroupoids where the underlying cubical structure gives geometrically natural definitions of tensor products and homotopies.