Results 1 
4 of
4
Open Diophantine Problems
 MOSCOW MATHEMATICAL JOURNAL
, 2004
"... Diophantine Analysis is a very active domain of mathematical research where one finds more conjectures than results. We collect here a number of open questions concerning Diophantine equations (including Pillai’s Conjectures), Diophantine approximation (featuring the abc Conjecture) and transcendent ..."
Abstract

Cited by 11 (3 self)
 Add to MetaCart
Diophantine Analysis is a very active domain of mathematical research where one finds more conjectures than results. We collect here a number of open questions concerning Diophantine equations (including Pillai’s Conjectures), Diophantine approximation (featuring the abc Conjecture) and transcendental number theory (with, for instance, Schanuel’s Conjecture). Some questions related to Mahler’s measure and Weil absolute logarithmic height are then considered (e. g., Lehmer’s Problem). We also discuss Mazur’s question regarding the density of rational points on a variety, especially in the particular case of algebraic groups, in connexion with transcendence problems in several variables. We say only a few words on metric problems, equidistribution questions, Diophantine approximation on manifolds and Diophantine analysis on function fields.
PERFECT POWERS: PILLAI’S WORKS AND THEIR DEVELOPMENTS
, 2009
"... Abstract. A perfect power is a positive integer of the form ax where a ≥ 1 and x ≥ 2 are rational integers. Subbayya Sivasankaranarayana Pillai wrote several papers on these numbers. In 1936 and again in 1945 he suggested that for any given k ≥ 1, the number of positive integer solutions (a, b, x, y ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
(Show Context)
Abstract. A perfect power is a positive integer of the form ax where a ≥ 1 and x ≥ 2 are rational integers. Subbayya Sivasankaranarayana Pillai wrote several papers on these numbers. In 1936 and again in 1945 he suggested that for any given k ≥ 1, the number of positive integer solutions (a, b, x, y), with x ≥ 2 and y ≥ 2, to the Diophantine equation ax − by = k is finite. This conjecture amounts to saying that the distance between two consecutive elements in the sequence of perfect powers tends to infinity. After a short introduction to Pillai’s work on Diophantine questions, we quote some later developments and we discuss related open problems.
Contents
, 2009
"... Report on some recent advances in Diophantine approximation Michel Waldschmidt............................................. 1 1 Rational approximation to a real number........................ 5 ..."
Abstract
 Add to MetaCart
(Show Context)
Report on some recent advances in Diophantine approximation Michel Waldschmidt............................................. 1 1 Rational approximation to a real number........................ 5
A NEW ALGORITHM TO SEARCH FOR SMALL NONZERO x 3 − y 2  VALUES
"... Abstract. In relation to Hall’s conjecture, a new algorithm is presented to search for small nonzero k = x 3 −y 2  values. Seventeen new values of k<x 1/2 are reported. 1. Hall’s conjecture Dealing with natural numbers, the difference (1.1) k = x 3 − y 2 is zero when x = t 2 and y = t 3 but, in ..."
Abstract
 Add to MetaCart
(Show Context)
Abstract. In relation to Hall’s conjecture, a new algorithm is presented to search for small nonzero k = x 3 −y 2  values. Seventeen new values of k<x 1/2 are reported. 1. Hall’s conjecture Dealing with natural numbers, the difference (1.1) k = x 3 − y 2 is zero when x = t 2 and y = t 3 but, in other cases, it seems difficult to achieve small absolute values. For a given k ̸ = 0, (1.1), known as Mordell’s equation, is an elliptic curve and has only finitely many solutions in integers by Siegel’s theorem. Therefore, for any nonzero k value, there are only finitely many solutions in x (which is hence bounded). There is a proven lower bound, due to A. Baker [1] and improved by H. M. Stark [14], that places the size of k above the order of log c (x) for any c<1. A bound concerning the minimal growth rate of k  was found early by M. Hall [2, 7] by means of a parametric family of the form (1.2) f(t) = t 9 (t9 +6t 6 +15t 3 + 12), g(t) = t15 27 + t12 +4t9 +8t6 3 f 3 (t) − g2 (t) = − 3t6 +14t3+27