Results 1  10
of
118
Wrappers for feature subset selection
 ARTIFICIAL INTELLIGENCE
, 1997
"... In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set, a ..."
Abstract

Cited by 1023 (3 self)
 Add to MetaCart
In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set, a feature subset selection method should consider how the algorithm and the training set interact. We explore the relation between optimal feature subset selection and relevance. Our wrapper method searches for an optimal feature subset tailored to a particular algorithm and a domain. We study the strengths and weaknesses of the wrapper approach and show a series of improved designs. We compare the wrapper approach to induction without feature subset selection and to Relief, a filter approach to feature subset selection. Significant improvement in accuracy is achieved for some datasets for the two families of induction algorithms used: decision trees and
An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants
 MACHINE LEARNING
, 1999
"... Methods for voting classification algorithms, such as Bagging and AdaBoost, have been shown to be very successful in improving the accuracy of certain classifiers for artificial and realworld datasets. We review these algorithms and describe a large empirical study comparing several variants in co ..."
Abstract

Cited by 539 (2 self)
 Add to MetaCart
Methods for voting classification algorithms, such as Bagging and AdaBoost, have been shown to be very successful in improving the accuracy of certain classifiers for artificial and realworld datasets. We review these algorithms and describe a large empirical study comparing several variants in conjunction with a decision tree inducer (three variants) and a NaiveBayes inducer.
The purpose of the study is to improve our understanding of why and
when these algorithms, which use perturbation, reweighting, and
combination techniques, affect classification error. We provide a
bias and variance decomposition of the error to show how different
methods and variants influence these two terms. This allowed us to
determine that Bagging reduced variance of unstable methods, while
boosting methods (AdaBoost and Arcx4) reduced both the bias and
variance of unstable methods but increased the variance for NaiveBayes,
which was very stable. We observed that Arcx4 behaves differently
than AdaBoost if reweighting is used instead of resampling,
indicating a fundamental difference. Voting variants, some of which
are introduced in this paper, include: pruning versus no pruning,
use of probabilistic estimates, weight perturbations (Wagging), and
backfitting of data. We found that Bagging improves when
probabilistic estimates in conjunction with nopruning are used, as
well as when the data was backfit. We measure tree sizes and show
an interesting positive correlation between the increase in the
average tree size in AdaBoost trials and its success in reducing the
error. We compare the meansquared error of voting methods to
nonvoting methods and show that the voting methods lead to large
and significant reductions in the meansquared errors. Practical
problems that arise in implementing boosting algorithms are
explored, including numerical instabilities and underflows. We use
scatterplots that graphically show how AdaBoost reweights instances,
emphasizing not only "hard" areas but also outliers and noise.
Inductive Learning Algorithms and Representations for Text Categorization
, 1998
"... Text categorization – the assignment of natural language texts to one or more predefined categories based on their content – is an important component in many information organization and management tasks. We compare the effectiveness of five different automatic learning algorithms for text categori ..."
Abstract

Cited by 501 (9 self)
 Add to MetaCart
Text categorization – the assignment of natural language texts to one or more predefined categories based on their content – is an important component in many information organization and management tasks. We compare the effectiveness of five different automatic learning algorithms for text categorization in terms of learning speed, realtime classification speed, and classification accuracy. We also examine training set size, and alternative document representations. Very accurate text classifiers can be learned automatically from training examples. Linear Support Vector Machines (SVMs) are particularly promising because they are very accurate, quick to train, and quick to evaluate. 1.1 Keywords Text categorization, classification, support vector machines, machine learning, information management.
Hierarchically Classifying Documents Using Very Few Words
, 1997
"... The proliferation of topic hierarchies for text documents has resulted in a need for tools that automatically classify new documents within such hierarchies. Existing classification schemes which ignore the hierarchical structure and treat the topics as separate classes are often inadequate in text ..."
Abstract

Cited by 421 (9 self)
 Add to MetaCart
The proliferation of topic hierarchies for text documents has resulted in a need for tools that automatically classify new documents within such hierarchies. Existing classification schemes which ignore the hierarchical structure and treat the topics as separate classes are often inadequate in text classification where the there is a large number of classes and a huge number of relevant features needed to distinguish between them. We propose an approach that utilizes the hierarchical topic structure to decompose the classification task into a set of simpler problems, one at each node in the classification tree. As we show, each of these smaller problems can be solved accurately by focusing only on a very small set of features, those relevant to the task at hand. This set of relevant features varies widely throughout the hierarchy, so that, while the overall relevant feature set may be large, each classifier only examines a small subset. The use of reduced feature sets allows us to util...
A bayesian approach to filtering junk Email, in: Learning for Text Categorization
 Papers from the 1998 Workshop, AAAI
, 1998
"... In addressing the growing problem of junk Email on the Internet, we examine methods for the automated construction of filters to eliminate such unwanted messages from a user’s mail stream. By casting this problem in a decision theoretic framework, we are able to make use of probabilistic learning m ..."
Abstract

Cited by 386 (6 self)
 Add to MetaCart
In addressing the growing problem of junk Email on the Internet, we examine methods for the automated construction of filters to eliminate such unwanted messages from a user’s mail stream. By casting this problem in a decision theoretic framework, we are able to make use of probabilistic learning methods in conjunction with a notion of differential misclassification cost to produce filters Which are especially appropriate for the nuances of this task. While this may appear, at first, to be a straightforward text classification problem, we show that by considering domainspecific features of this problem in addition to the raw text of Email messages, we can produce much more accurate filters. Finally, we show the efficacy of such filters in a real world usage scenario, arguing that this technology is mature enough for deployment.
On bias, variance, 0/1loss, and the curseofdimensionality
 Data Mining and Knowledge Discovery
, 1997
"... Abstract. The classification problem is considered in which an output variable y assumes discrete values with respective probabilities that depend upon the simultaneous values of a set of input variables x ={x1,...,xn}.At issue is how error in the estimates of these probabilities affects classificat ..."
Abstract

Cited by 193 (1 self)
 Add to MetaCart
Abstract. The classification problem is considered in which an output variable y assumes discrete values with respective probabilities that depend upon the simultaneous values of a set of input variables x ={x1,...,xn}.At issue is how error in the estimates of these probabilities affects classification error when the estimates are used in a classification rule. These effects are seen to be somewhat counter intuitive in both their strength and nature. In particular the bias and variance components of the estimation error combine to influence classification in a very different way than with squared error on the probabilities themselves. Certain types of (very high) bias can be canceled by low variance to produce accurate classification. This can dramatically mitigate the effect of the bias associated with some simple estimators like “naive ” Bayes, and the bias induced by the curseofdimensionality on nearestneighbor procedures. This helps explain why such simple methods are often competitive with and sometimes superior to more sophisticated ones for classification, and why “bagging/aggregating ” classifiers can often improve accuracy. These results also suggest simple modifications to these procedures that can (sometimes dramatically) further improve their classification performance.
Scaling Up the Accuracy of NaiveBayes Classifiers: a DecisionTree Hybrid
 PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING
, 1996
"... NaiveBayes induction algorithms were previously shown to be surprisingly accurate on many classification tasks even when the conditional independence assumption on which they are based is violated. However, most studies were done on small databases. We show that in some larger databases, the accura ..."
Abstract

Cited by 175 (4 self)
 Add to MetaCart
NaiveBayes induction algorithms were previously shown to be surprisingly accurate on many classification tasks even when the conditional independence assumption on which they are based is violated. However, most studies were done on small databases. We show that in some larger databases, the accuracy of NaiveBayes does not scale up as well as decision trees. We then propose a new algorithm, NBTree, which induces a hybrid of decisiontree classifiers and NaiveBayes classifiers: the decisiontree nodes contain univariate splits as regular decisiontrees, but the leaves contain NaiveBayesian classifiers. The approach retains the interpretability of NaiveBayes and decision trees, while resulting in classifiers that frequently outperform both constituents, especially in the larger databases tested.
Data Mining using MLC++: A Machine Learning Library in C++
 INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS
, 1997
"... Data mining algorithmsincluding machine learning, statistical analysis, and pattern recognition techniques can greatly improve our understanding of data warehouses that are now becoming more widespread. In this paper, we focus on classification algorithms and review the need for multiple classificat ..."
Abstract

Cited by 154 (16 self)
 Add to MetaCart
Data mining algorithmsincluding machine learning, statistical analysis, and pattern recognition techniques can greatly improve our understanding of data warehouses that are now becoming more widespread. In this paper, we focus on classification algorithms and review the need for multiple classification algorithms. We describe a system called MLC++ , which was designed to help choose the appropriate classification algorithm for a given dataset by making it easy to compare the utility of different algorithms on a specific dataset of interest. MLC ++ not only provides a workbench for such comparisons, but also provides a library of C ++ classes to aid in the development of new algorithms, especially hybrid algorithms and multistrategy algorithms. Such algorithms are generally hard to code from scratch. We discuss design issues, interfaces to other programs, and visualization of the resulting classifiers. 1 Introduction Data warehouses containing massive amounts of data have been b...
Tree Induction for Probabilitybased Ranking
, 2002
"... Tree induction is one of the most effective and widely used methods for building classification models. However, many applications require cases to be ranked by the probability of class membership. Probability estimation trees (PETs) have the same attractive features as classification trees (e.g., c ..."
Abstract

Cited by 130 (4 self)
 Add to MetaCart
Tree induction is one of the most effective and widely used methods for building classification models. However, many applications require cases to be ranked by the probability of class membership. Probability estimation trees (PETs) have the same attractive features as classification trees (e.g., comprehensibility, accuracy and efficiency in high dimensions and on large data sets). Unfortunately, decision trees have been found to provide poor probability estimates. Several techniques have been proposed to build more accurate PETs, but, to our knowledge, there has not been a systematic experimental analysis of which techniques actually improve the probabilitybased rankings, and by how much. In this paper we first discuss why the decisiontree representation is not intrinsically inadequate for probability estimation. Inaccurate probabilities are partially the result of decisiontree induction algorithms that focus on maximizing classification accuracy and minimizing tree size (for example via reducederror pruning). Larger trees can be better for probability estimation, even if the extra size is superfluous for accuracy maximization. We then present the results of a comprehensive set of experiments, testing some straghtforward methods for improving probabilitybased rankings. We show that using a simple, common smoothing methodthe Laplace correctionuniformly improves probabilitybased rankings. In addition, bagging substantioJly improves the rankings, and is even more effective for this purpose than for improving accuracy. We conclude that PETs, with these simple modifications, should be considered when rankings based on classmembership probability are required.
Bayesian Models for Keyhole Plan Recognition in an Adventure Game
, 1998
"... We present an approach to keyhole plan recognition which uses a dynamic belief (Bayesian) network to represent features of the domain that are needed to identify users' plans and goals. The application domain is a MultiUser Dungeon adventure game with thousands of possible actions and locations. W ..."
Abstract

Cited by 118 (10 self)
 Add to MetaCart
We present an approach to keyhole plan recognition which uses a dynamic belief (Bayesian) network to represent features of the domain that are needed to identify users' plans and goals. The application domain is a MultiUser Dungeon adventure game with thousands of possible actions and locations. We propose several network structures which represent the relations in the domain to varying extents, and compare their predictive power for predicting a user's current goal, next action and next location. The conditional probability distributions for each network are learned during a training phase, which dynamically builds these probabilities from observations of user behaviour. This approach allows the use of incomplete, sparse and noisy data during both training and testing. We then apply simple abstraction and learning techniques in order to speed up the performance of the most promising dynamic belief networks without a significant change in the accuracy of goal predictions. Our experi...