Results 1  10
of
421
A Fast and Elitist MultiObjective Genetic Algorithm: NSGAII
, 2000
"... Multiobjective evolutionary algorithms which use nondominated sorting and sharing have been mainly criticized for their (i) O(MN computational complexity (where M is the number of objectives and N is the population size), (ii) nonelitism approach, and (iii) the need for specifying a sharing param ..."
Abstract

Cited by 1381 (54 self)
 Add to MetaCart
(Show Context)
Multiobjective evolutionary algorithms which use nondominated sorting and sharing have been mainly criticized for their (i) O(MN computational complexity (where M is the number of objectives and N is the population size), (ii) nonelitism approach, and (iii) the need for specifying a sharing parameter. In this paper, we suggest a nondominated sorting based multiobjective evolutionary algorithm (we called it the Nondominated Sorting GAII or NSGAII) which alleviates all the above three difficulties. Specifically, a fast nondominated sorting approach with O(MN ) computational complexity is presented. Second, a selection operator is presented which creates a mating pool by combining the parent and child populations and selecting the best (with respect to fitness and spread) N solutions. Simulation results on a number of difficult test problems show that the proposed NSGAII, in most problems, is able to find much better spread of solutions and better convergence near the true Paretooptimal front compared to PAES and SPEA  two other elitist multiobjective EAs which pay special attention towards creating a diverse Paretooptimal front. Moreover, we modify the definition of dominance in order to solve constrained multiobjective problems eciently. Simulation results of the constrained NSGAII on a number of test problems, including a fiveobjective, sevenconstraint nonlinear problem, are compared with another constrained multiobjective optimizer and much better performance of NSGAII is observed. Because of NSGAII's low computational requirements, elitist approach, parameterless niching approach, and simple constrainthandling strategy, NSGAII should find increasing applications in the coming years.
Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach
 IEEE Transactions on Evolutionary Computation
, 1999
"... Abstract—Evolutionary algorithms (EA’s) are often wellsuited for optimization problems involving several, often conflicting objectives. Since 1985, various evolutionary approaches to multiobjective optimization have been developed that are capable of searching for multiple solutions concurrently in ..."
Abstract

Cited by 689 (22 self)
 Add to MetaCart
(Show Context)
Abstract—Evolutionary algorithms (EA’s) are often wellsuited for optimization problems involving several, often conflicting objectives. Since 1985, various evolutionary approaches to multiobjective optimization have been developed that are capable of searching for multiple solutions concurrently in a single run. However, the few comparative studies of different methods presented up to now remain mostly qualitative and are often restricted to a few approaches. In this paper, four multiobjective EA’s are compared quantitatively where an extended 0/1 knapsack problem is taken as a basis. Furthermore, we introduce a new evolutionary approach to multicriteria optimization, the Strength Pareto EA (SPEA), that combines several features of previous multiobjective EA’s in a unique manner. It is characterized by a) storing nondominated solutions externally in a second, continuously updated population, b) evaluating an individual’s fitness dependent on the number of external nondominated points that dominate it, c) preserving population diversity using the Pareto dominance relationship, and d) incorporating a clustering procedure in order to reduce the nondominated set without destroying its characteristics. The proofofprinciple results obtained on two artificial problems as well as a larger problem, the synthesis of a digital hardware–software multiprocessor system, suggest that SPEA can be very effective in sampling from along the entire Paretooptimal front and distributing the generated solutions over the tradeoff surface. Moreover, SPEA clearly outperforms the other four multiobjective EA’s on the 0/1 knapsack problem. Index Terms — Clustering, evolutionary algorithm, knapsack problem, multiobjective optimization, niching, Pareto optimality.
SPEA2: Improving the Strength Pareto Evolutionary Algorithm
, 2001
"... The Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele 1999) is a relatively recent technique for finding or approximating the Paretooptimal set for multiobjective optimization problems. In different studies (Zitzler and Thiele 1999; Zitzler, Deb, and Thiele 2000) SPEA has shown very ..."
Abstract

Cited by 601 (21 self)
 Add to MetaCart
(Show Context)
The Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele 1999) is a relatively recent technique for finding or approximating the Paretooptimal set for multiobjective optimization problems. In different studies (Zitzler and Thiele 1999; Zitzler, Deb, and Thiele 2000) SPEA has shown very good performance in comparison to other multiobjective evolutionary algorithms, and therefore it has been a point of reference in various recent investigations, e.g., (Corne, Knowles, and Oates 2000). Furthermore, it has been used in different applications, e.g., (Lahanas, Milickovic, Baltas, and Zamboglou 2001). In this paper, an improved version, namely SPEA2, is proposed, which incorporates in contrast to its predecessor a finegrained fitness assignment strategy, a density estimation technique, and an enhanced archive truncation method. The comparison of SPEA2 with SPEA and two other modern elitist methods, PESA and NSGAII, on different test problems yields promising results. 1
Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization
, 1993
"... The paper describes a rankbased fitness assignment method for Multiple Objective Genetic Algorithms (MOGAs). Conventional niche formation methods are extended to this class of multimodal problems and theory for setting the niche size is presented. The fitness assignment method is then modified to a ..."
Abstract

Cited by 556 (15 self)
 Add to MetaCart
The paper describes a rankbased fitness assignment method for Multiple Objective Genetic Algorithms (MOGAs). Conventional niche formation methods are extended to this class of multimodal problems and theory for setting the niche size is presented. The fitness assignment method is then modified to allow direct intervention of an external decision maker (DM). Finally, the MOGA is generalised further: the genetic algorithm is seen as the optimizing element of a multiobjective optimization loop, which also comprises the DM. It is the interaction between the two that leads to the determination of a satisfactory solution to the problem. Illustrative results of how the DM can interact with the genetic algorithm are presented. They also show the ability of the MOGA to uniformly sample regions of the tradeoff surface.
Comparison of Multiobjective Evolutionary Algorithms: Empirical Results
 Evolutionary Computation
, 2000
"... In this paper, we provide a systematic comparison of various evolutionary approaches to multiobjective optimization using six carefully chosen test functions. Each test function involves a particular feature that is known to cause difficulty in the evolutionary optimization process, mainly in conver ..."
Abstract

Cited by 539 (38 self)
 Add to MetaCart
(Show Context)
In this paper, we provide a systematic comparison of various evolutionary approaches to multiobjective optimization using six carefully chosen test functions. Each test function involves a particular feature that is known to cause difficulty in the evolutionary optimization process, mainly in converging to the Paretooptimal front (e.g., multimodality and deception). By investigating these different problem features separately, it is possible to predict the kind of problems to which a certain technique is or is not well suited. However, in contrast to what was suspected beforehand, the experimental results indicate a hierarchy of the algorithms under consideration. Furthermore, the emerging effects are evidence that the suggested test functions provide sufficient complexity to compare multiobjective optimizers. Finally, elitism is shown to be an important factor for improving evolutionary multiobjective search. Keywords Evolutionary algorithms, multiobjective optimization, ...
An Overview of Evolutionary Algorithms in Multiobjective Optimization
 Evolutionary Computation
, 1995
"... The application of evolutionary algorithms (EAs) in multiobjective optimization is currently receiving growing interest from researchers with various backgrounds. Most research in this area has understandably concentrated on the selection stage of EAs, due to the need to integrate vectorial performa ..."
Abstract

Cited by 452 (13 self)
 Add to MetaCart
The application of evolutionary algorithms (EAs) in multiobjective optimization is currently receiving growing interest from researchers with various backgrounds. Most research in this area has understandably concentrated on the selection stage of EAs, due to the need to integrate vectorial performance measures with the inherently scalar way in which EAs reward individual performance, i.e., number of offspring. In this review, current multiobjective evolutionary approaches are discussed, ranging from the conventional analytical aggregation of the different objectives into a single function to a number of populationbased approaches and the more recent ranking schemes based on the definition of Paretooptimality. The sensitivity of different methods to
Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications
, 1999
"... Many realworld problems involve two types of problem difficulty: i) multiple, conflicting objectives and ii) a highly complex search space. On the one hand, instead of a single optimal solution competing goals give rise to a set of compromise solutions, generally denoted as Paretooptimal. In the a ..."
Abstract

Cited by 396 (15 self)
 Add to MetaCart
Many realworld problems involve two types of problem difficulty: i) multiple, conflicting objectives and ii) a highly complex search space. On the one hand, instead of a single optimal solution competing goals give rise to a set of compromise solutions, generally denoted as Paretooptimal. In the absence of preference information, none of the corresponding tradeoffs can be said to be better than the others. On the other hand, the search space can be too large and too complex to be solved by exact methods. Thus, efficient optimization strategies are required that are able to deal with both difficulties. Evolutionary algorithms possess several characteristics that are desirable for this kind of problem and make them preferable to classical optimization methods. In fact, various evolutionary approaches to multiobjective optimization have been proposed since 1985, capable of searching for multiple Paretooptimal solutions concurrently in a single simulation run. However, in spite of this...
Multiobjective Evolutionary Algorithms: Analyzing the StateoftheArt
, 2000
"... Solving optimization problems with multiple (often conflicting) objectives is, generally, a very difficult goal. Evolutionary algorithms (EAs) were initially extended and applied during the mideighties in an attempt to stochastically solve problems of this generic class. During the past decade, ..."
Abstract

Cited by 384 (7 self)
 Add to MetaCart
Solving optimization problems with multiple (often conflicting) objectives is, generally, a very difficult goal. Evolutionary algorithms (EAs) were initially extended and applied during the mideighties in an attempt to stochastically solve problems of this generic class. During the past decade, a variety of multiobjective EA (MOEA) techniques have been proposed and applied to many scientific and engineering applications. Our discussion's intent is to rigorously define multiobjective optimization problems and certain related concepts, present an MOEA classification scheme, and evaluate the variety of contemporary MOEAs. Current MOEA theoretical developments are evaluated; specific topics addressed include fitness functions, Pareto ranking, niching, fitness sharing, mating restriction, and secondary populations. Since the development and application of MOEAs is a dynamic and rapidly growing activity, we focus on key analytical insights based upon critical MOEA evaluation of c...
A Niched Pareto Genetic Algorithm for Multiobjective Optimization
 IN PROCEEDINGS OF THE FIRST IEEE CONFERENCE ON EVOLUTIONARY COMPUTATION, IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE
, 1994
"... Many, if not most, optimization problems have multiple objectives. Historically, multiple objectives have been combined ad hoc to form a scalar objective function, usually through a linear combination (weighted sum) of the multiple attributes, or by turning objectives into constraints. The genetic a ..."
Abstract

Cited by 354 (6 self)
 Add to MetaCart
Many, if not most, optimization problems have multiple objectives. Historically, multiple objectives have been combined ad hoc to form a scalar objective function, usually through a linear combination (weighted sum) of the multiple attributes, or by turning objectives into constraints. The genetic algorithm (GA), however, is readily modified to deal with multiple objectives by incorporating the concept of Pareto domination in its selection operator, and applying a niching pressure to spread its population out along the Pareto optimal tradeoff surface. We introduce the Niched Pareto GA as an algorithm for finding the Pareto optimal set. We demonstrate its ability to find and maintain a diverse "Pareto optimal population" on two artificial problems and an open problem in hydrosystems.
Approximating the nondominated front using the Pareto Archived Evolution Strategy
 EVOLUTIONARY COMPUTATION
, 2000
"... We introduce a simple evolution scheme for multiobjective optimization problems, called the Pareto Archived Evolution Strategy (PAES). We argue that PAES may represent the simplest possible nontrivial algorithm capable of generating diverse solutions in the Pareto optimal set. The algorithm, in its ..."
Abstract

Cited by 298 (20 self)
 Add to MetaCart
(Show Context)
We introduce a simple evolution scheme for multiobjective optimization problems, called the Pareto Archived Evolution Strategy (PAES). We argue that PAES may represent the simplest possible nontrivial algorithm capable of generating diverse solutions in the Pareto optimal set. The algorithm, in its simplest form, is a (1 + 1) evolution strategy employing local search but using a reference archive of previously found solutions in order to identify the approximate dominance ranking of the current and candidate solution vectors. (1 + 1)PAES is intended to be a baseline approach against which more involved methods may be compared. It may also serve well in some realworld applications when local search seems superior to or competitive with populationbased methods. We introduce (1 + λ) and (μ  λ) variants of PAES as extensions to the basic algorithm. Six variants of PAES are compared to variants of the Niched Pareto Genetic Algorithm and the Nondominated Sorting Genetic Algorithm over a diverse suite of six test functions. Results are analyzed and presented using techniques that reduce the attainment surfaces generated from several optimization runs into a set of univariate distributions. This allows standard statistical analysis to be carried out for comparative purposes. Our results provide strong evidence that PAES performs consistently well on a range of multiobjective optimization tasks.