Results 1  10
of
277
The program dependence graph and its use in optimization
 ACM Transactions on Programming Languages and Systems
, 1987
"... In this paper we present an intermediate program representation, called the program dependence graph (PDG), that makes explicit both the data and control dependence5 for each operation in a program. Data dependences have been used to represent only the relevant data flow relationships of a program. ..."
Abstract

Cited by 826 (3 self)
 Add to MetaCart
In this paper we present an intermediate program representation, called the program dependence graph (PDG), that makes explicit both the data and control dependence5 for each operation in a program. Data dependences have been used to represent only the relevant data flow relationships of a program. Control dependence5 are introduced to analogously represent only the essential control flow relationships of a program. Control dependences are derived from the usual control flow graph. Many traditional optimizations operate more efficiently on the PDG. Since dependences in the PDG connect computationally related parts of the program, a single walk of these dependences is sufficient to perform many optimizations. The PDG allows transformations such as vectorization, that previously required special treatment of control dependence, to be performed in a manner that is uniform for both control and data dependences. Program transformations that require interaction of the two dependence types can also be easily handled with our representation. As an example, an incremental approach to modifying data dependences resulting from branch deletion or loop unrolling is introduced. The PDG supports incremental optimization, permitting transformations to be triggered by one another and applied only to affected dependences.
Selecting software test data using data flow information
 IEEE Trans. Soft. Eng., SE11:367
, 1985
"... AbstractThis paper defines a family of program test data selection criteria derived from data flow analysis techniques similar to those used in compiler optimization. It is argued that currently used path selection criteria, which examine only the control flow of a program, are inadequate. Our proc ..."
Abstract

Cited by 285 (2 self)
 Add to MetaCart
AbstractThis paper defines a family of program test data selection criteria derived from data flow analysis techniques similar to those used in compiler optimization. It is argued that currently used path selection criteria, which examine only the control flow of a program, are inadequate. Our procedure associates with each point in a program at which a variable is defined, those points at which the value is used. Several test data selection criteria, differing in the type and number of these associations, are defied and compared. Index TermsData flow, program testing, test data selection.
Lazy Code Motion
, 1992
"... We present a bitvector algorithm for the optimal and economical placement of computations within flow graphs, which is as efficient as standard unidirectional analyses. The point of our algorithm is the decomposition of the bidirectional structure of the known placement algorithms into a sequenc ..."
Abstract

Cited by 157 (20 self)
 Add to MetaCart
We present a bitvector algorithm for the optimal and economical placement of computations within flow graphs, which is as efficient as standard unidirectional analyses. The point of our algorithm is the decomposition of the bidirectional structure of the known placement algorithms into a sequence of a backward and a forward analysis, which directly implies the efficiency result. Moreover, the new compositional structure opens the algorithm for modification: two further unidirectional analysis components exclude any unnecessary code motion. This laziness of our algorithm minimizes the register pressure, which has drastic effects on the runtime behaviour of the optimized programs in practice, where an economical use of registers is essential.
Undecidability of Static Analysis
 ACM Letters on Programming Languages and Systems
, 1992
"... Static Analysis of programs is indispensable to any software tool, environment, or system that requires compile time information about the semantics of programs. With the emergence of languages like C and LISP, Static Analysis of programs with dynamic storage and recursive data structures has bec ..."
Abstract

Cited by 142 (5 self)
 Add to MetaCart
Static Analysis of programs is indispensable to any software tool, environment, or system that requires compile time information about the semantics of programs. With the emergence of languages like C and LISP, Static Analysis of programs with dynamic storage and recursive data structures has become a field of active research. Such analysis is difficult, and the Static Analysis community has recognized the need for simplifying assumptions and approximate solutions. However, even under the common simplifying assumptions, such analyses are harder than previously recognized. Two fundamental Static Analysis problems are May Alias and Must Alias. The former is not recursive (i.e., is undecidable) and the latter is not recursively enumerable (i.e., is uncomputable), even when all paths are executable in the program being analyzed for languages with ifstatements, loops, dynamic storage, and recursive data structures. Categories and Subject Descriptors: D.3.1 [Programming Languages...
Optimal Code Motion: Theory and Practice
, 1993
"... An implementation oriented algorithm for lazy code motion is presented that minimizes the number of computations in programs while suppressing any unnecessary code motion in order to avoid superfluous register pressure. In particular, this variant of the original algorithm for lazy code motion works ..."
Abstract

Cited by 112 (18 self)
 Add to MetaCart
An implementation oriented algorithm for lazy code motion is presented that minimizes the number of computations in programs while suppressing any unnecessary code motion in order to avoid superfluous register pressure. In particular, this variant of the original algorithm for lazy code motion works on flowgraphs whose nodes are basic blocks rather than single statements, as this format is standard in optimizing compilers. The theoretical foundations of the modified algorithm are given in the first part, where trefined flowgraphs are introduced for simplifying the treatment of flowgraphs whose nodes are basic blocks. The second part presents the `basic block' algorithm in standard notation, and gives directions for its implementation in standard compiler environments. Keywords Elimination of partial redundancies, code motion, data flow analysis (bitvector, unidirectional, bidirectional), nondeterministic flowgraphs, trefined flow graphs, critical edges, lifetimes of registers, com...
Symbolic Analysis for Parallelizing Compilers
, 1994
"... Symbolic Domain The objects in our abstract symbolic domain are canonical symbolic expressions. A canonical symbolic expression is a lexicographically ordered sequence of symbolic terms. Each symbolic term is in turn a pair of an integer coefficient and a sequence of pairs of pointers to program va ..."
Abstract

Cited by 106 (4 self)
 Add to MetaCart
Symbolic Domain The objects in our abstract symbolic domain are canonical symbolic expressions. A canonical symbolic expression is a lexicographically ordered sequence of symbolic terms. Each symbolic term is in turn a pair of an integer coefficient and a sequence of pairs of pointers to program variables in the program symbol table and their exponents. The latter sequence is also lexicographically ordered. For example, the abstract value of the symbolic expression 2ij+3jk in an environment that i is bound to (1; (( " i ; 1))), j is bound to (1; (( " j ; 1))), and k is bound to (1; (( " k ; 1))) is ((2; (( " i ; 1); ( " j ; 1))); (3; (( " j ; 1); ( " k ; 1)))). In our framework, environment is the abstract analogous of state concept; an environment is a function from program variables to abstract symbolic values. Each environment e associates a canonical symbolic value e x for each variable x 2 V ; it is said that x is bound to e x. An environment might be represented by...
The Interprocedural Coincidence Theorem
 In Int. Conf. on Comp. Construct
, 1992
"... We present an interprocedural generalization of the wellknown (intraprocedural) Coincidence Theorem of Kam and Ullman, which provides a sufficient condition for the equivalence of the meet over all paths (MOP ) solution and the maximal fixed point (MFP ) solution to a data flow analysis problem. Th ..."
Abstract

Cited by 85 (11 self)
 Add to MetaCart
We present an interprocedural generalization of the wellknown (intraprocedural) Coincidence Theorem of Kam and Ullman, which provides a sufficient condition for the equivalence of the meet over all paths (MOP ) solution and the maximal fixed point (MFP ) solution to a data flow analysis problem. This generalization covers arbitrary imperative programs with recursive procedures, global and local variables, and formal value parameters. In the absence of procedures, it reduces to the classical intraprocedural version. In particular, our stackbased approach generalizes the coincidence theorems of Barth and Sharir/Pnueli for the same setup, which do not properly deal with local variables of recursive procedures. 1 Motivation Data flow analysis is a classical method for the static analysis of programs that supports the generation of efficient object code by "optimizing" compilers (cf. [He, MJ]). For imperative languages, it provides information about the program states that may occur at s...
Simple Relational Correctness Proofs for Static Analyses and Program Transformations
, 2004
"... We show how some classical static analyses for imperative programs, and the optimizing transformations which they enable, may be expressed and proved correct using elementary logical and denotational techniques. The key ingredients are an interpretation of program properties as relations, rather tha ..."
Abstract

Cited by 83 (9 self)
 Add to MetaCart
We show how some classical static analyses for imperative programs, and the optimizing transformations which they enable, may be expressed and proved correct using elementary logical and denotational techniques. The key ingredients are an interpretation of program properties as relations, rather than predicates, and a realization that although many program analyses are traditionally formulated in very intensional terms, the associated transformations are actually enabled by more liberal extensional properties.
Program and interface slicing for reverse engineering
 In IEEE/ACM 15th Conference on Software Engineering (ICSE'93) (Los Alamitos
, 1993
"... ..."