Results 1  10
of
11
Reducibility and ⊤⊤lifting for computation types
 In Proc. 7th International Conference on Typed Lambda Calculi and Applications (TLCA), volume 3461 of Lecture Notes in Computer Science
, 2005
"... Abstract. We propose ⊤⊤lifting as a technique for extending operational predicates to Moggi’s monadic computation types, independent of the choice of monad. We demonstrate the method with an application to GirardTait reducibility, using this to prove strong normalisation for the computational meta ..."
Abstract

Cited by 19 (3 self)
 Add to MetaCart
(Show Context)
Abstract. We propose ⊤⊤lifting as a technique for extending operational predicates to Moggi’s monadic computation types, independent of the choice of monad. We demonstrate the method with an application to GirardTait reducibility, using this to prove strong normalisation for the computational metalanguage λml. The particular challenge with reducibility is to apply this semantic notion at computation types when the exact meaning of “computation ” (stateful, sideeffecting, nondeterministic, etc.) is left unspecified. Our solution is to define reducibility for continuations and use that to support the jump from value types to computation types. The method appears robust: we apply it to show strong normalisation for the computational metalanguage extended with sums, and with exceptions. Based on these results, as well as previous work with local state, we suggest that this “leapfrog ” approach offers a general method for raising concepts defined at value types up to observable properties of computations. 1
Implementing a Normalizer Using Sized Heterogeneous Types
 Journal of Functional Programming, MSFP’06 special issue
"... In the simplytyped lambdacalculus, a hereditary substitution replaces a free variable in a normal form r by another normal form s of type a, removing freshly created redexes on the fly. It can be defined by lexicographic induction on a and r, thus, giving rise to a structurally recursive normalize ..."
Abstract

Cited by 13 (2 self)
 Add to MetaCart
(Show Context)
In the simplytyped lambdacalculus, a hereditary substitution replaces a free variable in a normal form r by another normal form s of type a, removing freshly created redexes on the fly. It can be defined by lexicographic induction on a and r, thus, giving rise to a structurally recursive normalizer for the simplytyped lambdacalculus. We generalize this scheme to simultaneous substitutions, preserving its simple termination argument. We further implement hereditary simultaneous substitutions in a functional programming language with sized heterogeneous inductive types, Fωb, arriving at an interpreter whose termination can be tracked by the type system of its host programming language.
Weak Normalization for the SimplyTyped LambdaCalculus in Twelf (Extended Abstract)
 In Logical Frameworks and Metalanguages (LFM 04), IJCAR
, 2004
"... Andreas Abel Department of Computer Science, Chalmers University of Technology Rannvagen 6, SWE41296 Goteborg, Sweden Abstract. Weak normalization for the simplytyped calculus is proven in Twelf, an implementation of the Edinburgh Logical Framework. Since due to prooftheoretical restrict ..."
Abstract

Cited by 11 (3 self)
 Add to MetaCart
(Show Context)
Andreas Abel Department of Computer Science, Chalmers University of Technology Rannvagen 6, SWE41296 Goteborg, Sweden Abstract. Weak normalization for the simplytyped calculus is proven in Twelf, an implementation of the Edinburgh Logical Framework. Since due to prooftheoretical restrictions Twelf Tait's computability method does not seem to be directly usable, a combinatorical proof is adapted and formalized instead.
Refinement Types for Logical Frameworks
, 2010
"... The logical framework LF and its metalogic Twelf can be used to encode and reason about a wide variety of logics, languages, and other deductive systems in a formal, machinecheckable way. Recent studies have shown that MLlike languages can profitably be extended with a notion of subtyping called r ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
(Show Context)
The logical framework LF and its metalogic Twelf can be used to encode and reason about a wide variety of logics, languages, and other deductive systems in a formal, machinecheckable way. Recent studies have shown that MLlike languages can profitably be extended with a notion of subtyping called refinement types. A refinement type discipline uses an extra layer of term classification above the usual type system to more accurately capture certain properties of terms. I propose that adding refinement types to LF is both useful and practical. To support the claim, I exhibit an extension of LF with refinement types called LFR, work out important details of its metatheory, delineate a practical algorithm for refinement type reconstruction, and present several case studies that highlight the utility of refinement types for formalized mathematics. In the end I find that refinement types and LF are a match made in heaven: refinements enable many rich new modes of expression, and the simplicity of
Strong normalization and equi(co)inductive types
 Proc. of the 8th Int. Conf. on Typed Lambda Calculi and Applications, TLCA 2007, volume 4583 of Lect. Notes in Comput. Sci. SpringerVerlag (2007), 8–22
"... Abstract. A type system for the lambdacalculus enriched with recursive and corecursive functions over equiinductive andcoinductive types is presented in which all welltyped programs are strongly normalizing. The choice of equiinductive types, instead of the more common isoinductive types, in ue ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
(Show Context)
Abstract. A type system for the lambdacalculus enriched with recursive and corecursive functions over equiinductive andcoinductive types is presented in which all welltyped programs are strongly normalizing. The choice of equiinductive types, instead of the more common isoinductive types, in uences both reduction rules and the strong normalization proof. By embedding iso into equitypes, the latter ones are recognized as more fundamental. A model based on orthogonality is constructed where a semantical type corresponds to a set of observations, and soundness of the type system is proven. 1
Structural Normalization for Classical Natural Deduction
, 2006
"... We present a judgemental formulation of natural deduction for classical logic, similar in spirit to Wadler’s dual calculus, but founded on the logical judgements A true and A false; proofbycontradiction, which puts these two judgements in opposition, lies at the heart of our system. We then show d ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
(Show Context)
We present a judgemental formulation of natural deduction for classical logic, similar in spirit to Wadler’s dual calculus, but founded on the logical judgements A true and A false; proofbycontradiction, which puts these two judgements in opposition, lies at the heart of our system. We then show directly a normalization property for this system by a purely syntactic structural induction. 1
Polarized Subtyping for Sized Types
, 2006
"... We present an algorithm for deciding polarized higherorder subtyping without bounded quantification. Constructors are identified not only modulo β, but also η. We give a direct proof of completeness, without constructing a model or establishing a strong normalization theorem. Inductive and coinduct ..."
Abstract
 Add to MetaCart
(Show Context)
We present an algorithm for deciding polarized higherorder subtyping without bounded quantification. Constructors are identified not only modulo β, but also η. We give a direct proof of completeness, without constructing a model or establishing a strong normalization theorem. Inductive and coinductive types are enriched with a notion of size and the subtyping calculus is extended to account for the arising inclusions between the sized types. 1.
Syntactical Strong Normalization for Intersection Types with Term Rewriting Rules
, 2007
"... We investigate the intersection type system of Coquand and Spiwack with rewrite rules and natural numbers and give an elementary proof of strong normalization which can be formalized in a weak metatheory. 1 ..."
Abstract
 Add to MetaCart
(Show Context)
We investigate the intersection type system of Coquand and Spiwack with rewrite rules and natural numbers and give an elementary proof of strong normalization which can be formalized in a weak metatheory. 1
IOS Press Untyped Algorithmic Equality for MartinLöf’s Logical Framework with Surjective Pairs
"... Abstract. MartinLöf’s Logical Framework is extended by strong Σtypes and presented via judgmental equality with rules for extensionality and surjective pairing. Soundness of the framework rules is proven via a generic PER model on untyped terms. An algorithmic version of the framework is given thr ..."
Abstract
 Add to MetaCart
(Show Context)
Abstract. MartinLöf’s Logical Framework is extended by strong Σtypes and presented via judgmental equality with rules for extensionality and surjective pairing. Soundness of the framework rules is proven via a generic PER model on untyped terms. An algorithmic version of the framework is given through an untyped βηequality test and a bidirectional type checking algorithm. Completeness is proven by instantiating the PER model with ηequality on βnormal forms, which is shown equivalent to the algorithmic equality. 1.